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Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals
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In analogy to the Wannier equation for localized electronic impurity states in crystalline materials, a wave
equation for the envelope of the resonant optical modes of local defects within two-dimensional periodic
dielectric structures is derived. In the case of degenerate satellite extrema, this is generalized to a set of coupled
Wannier-like equations for a multienvelope system. The localized Wannier envelope solutions are then used in
conjunction with a group theoretical symmetry analysis to determine an approximate form for donor and
acceptor modes in a hexagonal photonic crystal. For an effective harmonic potential formed by varying the
filling fraction of the lattice, the localized resonant modes are explicitly calculated using the Wannier equation
and symmetry analysis, and a comparison to exact numerically computed modes is presented.
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I. INTRODUCTION

Beginning with the first proposal of spontaneous emiss
control1,2 using three-dimensional photonic band gap mat
als in 1987 by Yablonovitch,3 there has been an increasin
interest in, and effort towards, applying multi-periodic hig
contrast dielectric and metallic structures for the diffractio
guiding, and localization of light in optoelectronic applic
tions. A particularly interesting geometry for such applic
tions is that of planar two-dimensional~2D! photonic crystal
~PC! slab waveguide structures,4–6 where practical fabrica-
tion issues are balanced against the extent of the attain
photonic band gap. In such structures, local modificati
~defects! of the photonic lattice have been used to fo
nanometer-scale lasers,7–10 add-drop filters,11 and coupled-
cavity-waveguide systems.12–15

Most of the planar 2D PC structures to date have b
analyzed using numerical methods such as the fin
difference time-domain~FDTD! algorithm. These technique
are extremely useful in providing accurate field profiles a
frequencies, but are for the most part ineffective in motiv
ing new and interesting device designs. One would hop
develop an approximate model of the properties of nonu
form photonic crystals which depends more transpare
upon the dielectric lattice and its band structure. This
been largely accomplished by Russell and Birks,16,17 where
in analogy to the work on Bloch electron dynamics,18,19 they
developed asemiclassicalpicture of ray optics~Hamiltonian
optics20! within nonuniform photonic crystals to study th
propagation of the optical envelope~ray!. In this formalism
the local band structure is used to arrive at a spatially vary
Hamiltonian, and the evolution of the optical envelope
real and reciprocal space is governed by Hamilton’s eq
tions in which the conjugate momentum to the~coarse
grained! spatial coordinates is taken as the crystal mom
tum k. This method has been used to describe in an ele
and intuitive way the properties of fiber Bragg gratings, 2
PC based wavelength-division multiplexing devices a
closed-orbit paths~localized resonances!. A systematic for-
malism, based upon the multiple scales method, has
been developed by Sipeet al.21 and de Sterkeet al.22 to gen-
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erate a rigorous coupled-mode theory for nonuniform~and
nonlinear! grating structures. These coupled-mode equati
are then used by the authors to describe an effective med
in which the effective fields are the amplitudes~envelopes!
of the Bloch waves of the photonic crystal and the imagin
regions of the effective refractive index are related to
local band gap of the nonuniform grating.

In this paper, in analogy to the study of localized impur
states of electrons in periodic crystals,23–26 we look to de-
velop a Wannier-likewave equationto describe the envelop
of resonant modes of localized perturbations within perio
dielectric structures. This has been done previously, in
more restrictive setting by Johnsonet al.27, and more re-
cently in a general way by Charbonneau-Lefortet al.28 and
Istrate et al.29 in the study of photonic crystal heterostru
tures. In these works, a wave equation for localized mode
nonuniform photonic crystals using an envelope approxim
tion has been developed; however, in each case the enve
equation was formulated as a generalized Hermitian eig
value equation in terms of theelectric field, and more impor-
tantly, localized modes formed from nondegenerate sate
extrema were only considered. In the analysis presented
we: ~i! consider the magnetic field, and~ii ! incorporate the
mixing amongst the degenerate peaks or valleys of the o
of k in the band structure, resulting in a set of coupl
Wannier-like equations describing a multienvelope syste
This allows us to more easily apply the envelope formali
to resonant cavity modes of PC slab waveguides, which
two- or three-dimensional crystal mix Bloch modes near
degenerate satellite extrema of the orbit ofk. We also focus
on the magnetic field as it can be approximately treated a
scalar for TE-like polarization modes of PC slabs,39 a tech-
nologically important system owing to the large band g
obtainable for modes of this polarization in connected die
cric lattices. From the shape and symmetry of the envel
of a localized resonant mode, and its relation to the unde
ing photonic band structure, one may better design such
tures of planar 2D PC resonant cavities as in-plane and
tical emission, resonator-waveguide coupling, and the qua
factor of resonant modes. In addition, the Wannier-like eq
tion for localized defect modes, more clearly and rigorou
©2003 The American Physical Society14-1
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relates the curvature of the band structure to the formatio
donor and acceptor modes for different types of local per
bations of a dielectric lattice.

The paper is organized as follows. In Sec. II we deriv
set of coupled Wannier-like equations for the envelope fu
tions of localized TE-like states in planar 2D PC structur
where, as predicted by the Wannier theorem, the underly
band structure of the periodic dielectric structure gives rise
an effective mass tensor. We also derive an approximate f
for the effective potential in the Wannier envelope equat
in terms of the local perturbation to the dielectric lattice.
Sec. III we calculate an approximate symmetry basis for
TE-like Bloch modes at the valence and conduction ba
edge of the first-order band gap in a 2D photonic crys
consisting of a hexagonal array of air holes. From this sy
metry basis we derive approximate relations for the effec
mass tensor of the Wannier equation, and in conjunction w
a symmetry analysis used to determine the mixing among
degenerate satellite extrema, we find an approximate f
for the localized donor and acceptor modes of a hexago
lattice with a parabolically graded filling fraction. For com
parison, numerical calculations using FDTD of the accep
and donor modes of such a defect cavity are also presen

II. WANNIER THEOREM FOR PHOTONS IN PERIODIC
DIELECTRIC STRUCTURES

In studying the localized electronic states associated w
impurities within a crystalline material it is often helpful t
transform Schro¨dinger’s equation into Fourier space, sim
plify the set of coupled equations through the limited Four
decomposition of the perturbing potential, and then
transform back to real-space coordinates where a wave e
tion for the envelope of the localized states is generated.
Wannier theorem18 captures the essence of this procedure
using the underlying energy-~crystal!momentum dispersion
generated by the periodic Coulombic potential of the crys
in a spatially coarse-grained theory of electron dynam
One application of the Wannier theorem is in the calculat
of bound electronic states of crystal impurities.23–26,30 The
basic form of the Wannier equation for the envelope of i
purity states is

$@E2En~\21p̂!#1DV~r !%G~r !50, ~1!

where En(\21p̂) is the energy-~crystal!momentum disper-
sion relation of thenth energy band with wave vectork
replaced by the canonical momentum operatorp̂
52 i\“ , DV(r ) is the impurity potential, andG(r ) is the
envelope function describing the localized electronic stat

We would like to find a similar Wannier-like equation fo
the envelope of localized photon states in periodic dielec
lattices. Of particular interest are the localized reson
modes of planar 2D PCs formed in optically thin dielect
slabs~see Fig. 1!. The fundamental TE-like even modes a
TM-like odd modes of a symmetric 2D patterned dielect
slab waveguide can be approximated by scalar fields. In w
follows we shall focus on the TE-like modes~as discussed in
the Appendix a similar theory may also be derived for t
03521
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TM-like modes of the PC slab! as it is for these modes that
significant frequency band gap opens up in the case of c
nected dielectric lattices such as those used to form la
cavities10 and optical waveguides.31 For the fundamental TE-
like even modes the magnetic field can be approximated
its ẑ-component normal to the plane of the slab~only strictly
valid in the horizontal mirror plane of a symmetric slab!.
This reduces the problem to an effective scalar field theor
which H(r )' ẑH(r'), with r' labeling the coordinates
within the horizontal plane of the slab~to simplify notation,
from here on we drop the' label from the in-plane coordi-
nates!. The scalar field eigenvalue equation for the magne
field in this quasi-2D approximation is~see the Appendix!,

L̂H
TEHd5ldHd , ~2!

whereld5(vd /c)2, vd is the angular frequency of the de
fect mode,c the speed of light in vacuum, and

L̂H
TE52“~ho1Dh!•“ 2~ho1Dh!“ 2. ~3!

ho is given by the inverse of the the square of the refract
index of the unperturbed photonic crystal, 1/n2D

2 (r ), andDh
represents the localized perturbation to 1/n2D

2 (r ). The eigen-

operatorL̂H ~we drop the TE superscript from here on! can

be separated into an unperturbed photonic crystal part,L̂H,o
52“(ho)•“ 2ho“

2, and a perturbation part due to th

defect,L̂H8 52“(Dh)•“ 2Dh“ 2.
The ~2D approximate! modes of the perfect crystal ar

eigenmodes ofL̂H,o ,

L̂H,oHl ,k5l l ,kHl ,k , ~4!

wherel labels the band index andk labels the in-plane crys
tal momentum. As theHl ,k are Bloch waves they can b
written as

Hl ,k5
1

L
hl ,k~r !eik•r, ~5!

with L2 equal to the area of the 2D photonic crystal and
set of periodic functions,hl ,k(r ), at crystal momentumk,
satisfying their own set of orthogonality relations~normal-
ized over the lattice unit cellv)

FIG. 1. ~a! Illustration of the two-dimensional hexagonal P
slab waveguide structure.~b! Fundamental TE-like~even! guided
mode band structure (r /a50.36,nslab5neff52.65). The guided
mode band-gap extends over a normalized frequency of 0.29–0
The air ~cladding! light line is shown as a solid black line.
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WANNIER-LIKE EQUATION FOR THE RESONANT . . . PHYSICAL REVIEW B 68, 035214 ~2003!
^hl 8,kuhl ,k&v[
1

v Ev
d2rhl 8,k

* hl ,k5d l 8,l . ~6!

In forming a defect state by perturbing the lattice in
localized region of space, the Bloch modes in proximity
the degenerate satellite extrema of a band edge, the$k i ; i
51,2, . . . ,M % points of the!k ~from here on reference to
the !k refers implicitly to the orbit of this band edge!, are
most strongly coupled together:25

Hd~r !5 (
i

ci (
k

G̃ i~k2k i !
1

L
hl ,ke

ik•r. ~7!

G̃ i are a set of Fourier space envelope functions, which
the spirit of the effective mass theory, have amplitudes loc
ized aroundk5k i . Note that throughout this analysis th
band of interest at the band edge is considered to be no
generate and we neglectinterband mixing.25

Assuming that thehl ,k do not vary significantly~using a
similar argument as in Ref. 24! over the range of each Fou
rier space envelope function,

Hd~r !' (
i

ci

1

L
hl ,ki

eiki•rS (
Dk

G̃ i~Dk!eiDk•r D , ~8!

where Dk[k2k i . Writing the envelope functions in rea
space,

G i~r !5 (
Dk

G̃ i~Dk!eiDk•r, ~9!

allows us to rewrite Eq.~8! as

Hd~r !' (
i

ci

1

L
hl ,ki

eiki•r G i~r !. ~10!

It is in this way that the real space envelope of localiz
defect modes can be interpreted in the Fourier domain24 as a
result of the intraband mixing of the unperturbed Bloc
modes of the crystal.

Returning to Eq.~2!, we now proceed to find an eigen
value equation for the envelope functions. Multiplying bo
sides of Eq.~2! by Hl 8,k8 , wherek8 is chosen in a neighbor
hood ofk i , and integrating over the in-plane spatial coor
nates gives

(
j

cj (
k

G̃ j~k2k j !^Hl 8,k8u~ld2l l ,k2L̂H8 !Hl ,k&50.

~11!

Using the orthonormality of the Bloch waves and the n
malization of their periodic parts described in Eq.~6!,

^Hl 8,k8u~ld2l l ,k!Hl ,k&5~ld2l l ,k!
1

L2 (
i 51

N

ei (k2k8)•Ri,

E
v

d2rhl 8,k8
* hl ,ke

i (k2k8)•r5~ld2l l 8,k8!d l 8,ldk8,k . ~12!
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Note that a reciprocal lattice vector was not included indk8,k

as bothk8 andk ~through the localized nature of theG̃ i) are
assumed to lie within a neighborhood of one of the wa
vectors comprising the!k, which by definition are not
linked by a reciprocal lattice vector. Equation~11! then sim-
plifies to

ci~ld2l l ,k8!G̃ i~k82k i !2 (
j

cj (
k

^Hl 8,k8uL̂H8 Hl ,k&

3G̃ j~k2k j !50. ~13!

Fourier expanding the defect perturbation in recipro
space,

Dh~r !5 (
k9

Dh̃k9e
ik9•r, ~14!

we can write for the mode-mixing term̂Hl 8,k8uL̂H8 Hl ,k& in
Eq. ~13!:

^Hl 8,k8uL̂H8 Hl ,k&

52 (
k9

S (
i 51

N

ei (k1k92k8)•Ri
Dh̃k9

L2 E
v

d2r ei (k1k92k8)•r

3hl 8,k8
* @ ik9•~“ 1 ik!1“

212ik•“ 2uku2#hl ,kD
5 (

G
(
k9

@Dh̃k9Kl 8,l~k8,k,G!

1Dh̃k9~ ik9!•L l 8,l~k8,k,G!#dk82k91G,k , ~15!

where theG are reciprocal lattice vectors, and we have d
fined scalar and vector coupling matrix elements as

Kl 8,l~k8,k,G!

52
1

v Ev
d2reiG•rhl 8,k8

* ~“ 212ik•“ 2uku2!hl ,k

[2^hl 8,k8ue
iG•r~“ 212ik•“ 2uku2!uhl ,k&v ~16!

and

L l 8,l~k8,k,G!52
1

v Ev
d2reiG•rhl 8,k8

* ~“ 1 ik!hl ,k

[2^hl 8,k8ue
iG•r~“ 1 ik!uhl ,k&v . ~17!

Substituting Eq.~15! into Eq. ~13!, keeping only terms
that mix states within thel th band, results in the following
Fourier space representation of the magnetic field ma
equation:
4-3



e

nl

e

-

-

e
g

in

-

-
Eq

p

an
eld
to
ns,

u-
s

rier
od

cal
t

ies

ns.
tice
ing
ust
ill

ant

the
e

OSKAR PAINTER, KARTIK SRINIVASAN, AND PAUL E. BARCLAY PHYSICAL REVIEW B 68, 035214 ~2003!
ci~ld2l l ,k8!G̃ i~k82k i !

2 (
G

(
j

cj (
k9

$@Dh̃k9Kl ,l~k8,k82k91G,G!

1Dh̃k9~ ik9!•L l ,l~k8,k82k91G,G!#

3G̃ j@~k82k91G!2k j #%50. ~18!

For defect perturbations which are localized ink-space as
well as in real space, all things being equal the strong
mixing terms will be those withk9 nearest the origin. As
such, a further simplification can be made by including o
those reciprocal lattice vectorsG which minimize the mag-
nitude of k9 in coupling the different neighborhoods of th
!k ~satellite extrema!. The local mixing of states within the
neighborhood of eachk i will thus be dominated by the Fou
rier components ofDh̃ about the origin withG50. Simi-
larly, the mixing between neighborhoods ofk i andk j , where
iÞ j , will be dominated by a singleG which minimizes the
magnitude of the vectorG2(k j2k i). Writing this reciprocal
lattice vector asGj ,i and only including the dominant cou
pling terms in Eq.~18! collapses the sum overG, and yields

ci„~ld2l l ,k8!G̃ i~k82k i !2 (
k9

@Dh̃k9Kl ,l~k i ,k i ,0!

1Dh̃k9~ ik9!•L l ,l~k i ,k i ,0!#G̃ i@~k82k9!2k i #

2 (
iÞ j

cj (
k9

„@Dh̃k9Kl ,l~k i ,k j ,Gj ,i !1Dh̃k9~ ik9!

•L l ,l~k i ,k j ,Gj ,i !#G̃ j$@k82~k92Gj ,i !#2k j%…50,

~19!

where we have neglected the variation ofKl ,l andL l ,l within
the local neighborhoods of thek iP!k.

Implicit in the derivation of Eq.~19!is that theG̃ i are
localized around thek i in reciprocal space. In order to mak
this explicit ~which will be necessary when transformin
back to real-space coordinates!we expandl l ,k8 in the vicin-
ity of eachk i ,

l l ,k8'@l l ,o1l l ,i8 ~Dk!#1O~Dk3!, ~20!

where l l ,o is the top ~bottom! of the band edge,Dk5k8
2k i , and l l ,i8 only contains terms up to second order
elements ofDk.25 In the case of thosek i located at an ex-
trema of a given~nondegenerate! band the resulting disper
sion relation may be written in the form,l l ,i8 (Dk)5Dk
•M l ,*

21
•Dk, where the matrixM l ,* is an effective mass ten

sor defined by the curvature of the band. Substituting
~20! into Eq. ~19! gives
03521
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ciS ~Dld2l l ,i8 ~Dk!!G̃ i~Dk!2 (
k9

@Dh̃k9Kl ,l~k i ,k i ,0!

1Dh̃k9~ ik9!•L l ,l~k i ,k i ,0!#G̃ i~Dk2k9!D
2 (

iÞ j
cj (

k9
~@Dh̃k9Kl ,l~k i ,k j ,Gj ,i !1Dh̃k9~ ik9!

•L l ,l~k i ,k j ,Gj ,i !#G̃ j@~Dk1Gj ,i2Dk j ,i !2k9# !50,

~21!

whereDld5ld2l l ,o is the eigenvalue referenced to the to
~bottom! of the band edge, andDk j ,i[k j2k i .

Equation ~21! is the Fourier space representation of
approximate master equation for the localized magnetic fi
envelope functions of defect states. Transforming back
real space results in a set of coupled Wannier-like equatio

ci$@Dld2l l ,i8 ~\21p̂!#2Dh i ,i8 ~r !%G i~r !

2 (
iÞ j

cj~e2 i (Gj ,i2Dk j ,i )•rDh j ,i8 ~r !!G j~r !50,

~22!

Dh j ,i8 ~r !5Dh~r !Kl ,l@~k i ,k j ,Gj ,i !

1“ ~Dh~r !!#•L l ,l~k i ,k j ,Gj ,i !, ~23!

wherep̂52 i\“ as in quantum mechanics, andDh j ,i8 (r ) is
an effective perturbation potential~valid for TE-like modes;
see the Appendix for the TM case!.

Assuming that the amplitude of the relatively large Fo
rier components ofDh(r ) associated with mixing of state
between neighborhoods ofdifferentsatellite points of the!k
are much smaller than the amplitude of the small Fou
components which mix states within a given neighborho
of a point of the!k, we can treat theinter-k i mixing as a
perturbation to the envelope functions formed from the lo
k-space mixing.30 This allows us to write an independen
Wannier-like equation for each of theG i(r ) envelope func-
tions,

$@Dld2l l ,i8 ~\21p̂!#2Dh i ,i8 ~r !%G i~r !50. ~24!

Of most importance for the types of resonant cavit
studied here are the ground-state solutions to Eq.~24!. This
is due to the relatively localized nature of the defect regio
For de-localized defect regions extending over many lat
periods a more extensive set of envelope functions, includ
higher order functions with added nodes and antinodes m
be included. Choice of such a set of envelope functions w
depend on the geometry of the boundary of the defect.32 For
the present work then, we takeG i(r ) equal to the ground-
state envelope,G i ,o(r ).

As the ground state of a system is in general invari
under the symmetries of the Hamiltonian of that system,30,33

the ground-state envelope function should transform as
identity of the point symmetry group of the Wannier-lik
4-4
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equation given in Eq.~24!. The spatial symmetries of Eq
~24! are those ofl l ,i8 (\21p̂) and Dh i ,i8 (r ). As discussed in
Ref. 34, it then follows that the point symmetries of t
Wannier-like equation for the ground-state envelope fu
tions are given byG 8ùGki

8 , whereG 8 is the point group of

the defect perturbation~independent of the crystal lattice!
and Gki

8 is the point group isomorphic to the group of th

wave vector~of the underlying Bravais lattice, not the cry
tal! at the pointk i in the first Brillouin zone~IBZ!. With this
knowledge the coefficientsci of the defect state in Eq.~10!
can then be determined using symmetry arguments.

III. ENVELOPE FUNCTION CALCULATION

Here we will consider two examples of how the Wannie
like equation of the previous section can be used to calcu
an approximate envelope function for localized photon s
in a hexagonal lattice photonic crystal. The first exam
consists of a localized donor-type mode formed at the b
edge occurring at theX point of the reciprocal lattice wher
the band structure has a local minimum and is given b
simple paraboloid in a neighborhood of theX point. The
second example is that of a localized acceptor-type m
formed from theJ-point where the band structure has a loc
maximum.

For the hexagonal lattice, the high symmetry poin
within and on the boundary of the IBZ are the sixX points
($6(0,1)kX , 6(A3/2,1/2)kX , 6(A3/2,21/2)kX%), the six
J points ($6(1/2,A3/2)kJ , 6(1/2,2A3/2)kJ , 6(1,0)kJ%),
and theG point5(0,0). The first-order band gap of the he
agonal lattice@see Fig. 1~b!# is defined from above by theX
point and below by theJ point. In analogy to the electroni
bands in semiconductor crystals we term the high freque
band defining the first-order band gap the ‘‘conductio
band, and the low frequency band the ‘‘valence’’ band. In
approximate analysis of the defect states to follow we w
need to include all the degenerate satellite peaks~valence
band! and valleys~conduction band!. For the hexagonal lat
tice the different degenerateX and degenerateJ points on
IBZ boundary are labeled as in Fig. 2~b!. The group of the
wave vector, which defines the point group symmetry o

FIG. 2. Illustration of the~a! real and~b! reciprocal spaces o
the two-dimensional hexagonal PC (ua1u5ua2u5a, uG1u5uG2u
54p/A3a, ukXu52p/A3a, ukJu54p/3a). The high-symmetry
points of the hexagonal lattice, referenced to the center of an
hole, area5(0,0), b5(a/2,0), andc5(0,a/A3).
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plane wave moduloG within the dielectric lattice, is for the
X, J, andG points of the hexagonal latticeC2v , C3v , and
C6v , respectively.35

A. Donor modes at theX point

For the frequency bands defining the first-order band-g
the unpatterned waveguide modes which are most stro
coupled together to form the Bloch modes at theX point are
in our quasi-2D picture given byB5 ẑeikXi

•r�, with r' cor-
responding to coordinates within the symmetry plane of
dielectric slab~for what follows we drop the' in labeling
the symmetry plane coordinates!. The unperturbed frequen
cies of these modes are degenerate and can be writte
vo

X'cukXu/neff , whereneff is an effective index taking into
account the vertical waveguiding perpendicular to the sla

The!k at theX point, which is formed from the indepen
dent satelliteX points within the IBZ, consists~not uniquely!
of wave vectors$kX1

,kX2
,kX3

%, all other X points being
equivalent modulo a reciprocal lattice vector. A symme
basis for the modes of the patterned slab waveguide at
X1-satellite point, the irreducible representations~IRREPs!
of the little group at theX point, can be found by applying
the symmetry operations of the group of the wave vec
(GokX

5C2v) to the seed vectorBkX1
. In this case, the basis i

simply (BkX1
,B2kX1

). Projecting this symmetry basis ont

the IRREP spaces ofC2v yields

BA2

X15 ẑ cos~kX1
•ra!,

BB1

X15 ẑ sin~kX1
•ra!, ~25!

whereA2 and B1 label the IRREP spaces ofC2v ~see Ref.
34!, and the indexa is used to denote the location of th
origin within the hexagonal lattice@marked in Fig. 2~a!#. As
the magnetic field ofBA2

X1 overlaps strongly with the air hole

of the PC~its the electric field lying largely in the dielectric!
it describes the lower frequency ‘‘valence’’ band mode, wh
BB1

X1 describes the ‘‘conduction’’ band mode. This is a res

of the tendency for modes with the electric field concentra
within regions of high dielectric constant to be lower fr
quency than those with the electric field concentrated in l
dielectric regions.36

In order to fully define the modes at theX point all modes
of the !k must be included. The point symmetry operatio
of the full point group of the hexagonal lattice not include
in the group of the wave vector, the coset generators, ma
used to generate the modes of all the degenerate sat
points within the!k. In the case of theX point this corre-
sponds to successive rotations byp/6 (C6 rotation!. The re-
sult is the following set of three degenerateX-point valence
band modes:

VBX
a5S vX1

vX2

vX3

D 5 ẑS cos~kX1
•ra!

cos~kX2
•ra!

cos~kX3
•ra!

D , ~26!

ir
4-5
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andX-point conduction band modes,

CBX
a5S cX1

cX2

cX3

D 5 ẑS sin~kX1
•ra!

sin~kX2
•ra!

sin~kX3
•ra!

D . ~27!

Separating the plane wave and periodic parts of the ab
Bloch modes allows us to write

vXi
5

ẑ

2
~11e2 i2kXi

•ra
!eikXi

•ra
,

cXi
5

ẑ

i2
~12e2 i2kXi

•ra
!eikXi

•ra
, ~28!

with normalized periodic functions given by

hv,kXi
5~1/A2!~11e2 i2kXi

•ra
!,

hc,kXi
5~1/iA2!~12e2 i2kXi

•ra
!. ~29!

We now use the above set of modes to calculate the l
dispersion of the conduction band at theX point. The Her-
th

d

ic

i

03521
ve

al

mitian operator acting on the space of periodic functions
point k in the reciprocal lattice, for the quasi-2D case stud
here, is

L̂H,k52“~ho!•~ ik1“ !1ho~ uku222ik•“ 2“

2!,
~30!

with an associated eigenvalue equation given by

L̂H,khl ,k5l l ,khl ,k . ~31!

As in ‘‘ k•p̂’’ theory for Bloch electrons in crystalline mate

rials, we expandL̂H,k about pointko ,

L̂H,k5L̂H,ko
1L̂H,Dk8 , ~32!

with

L̂H,Dk8 [houDku21Dk•@2 i“~ho!12hoko22iho“ #.
~33!

TreatingL̂H,Dk8 as a perturbation toL̂H,ko
, and expandinghl ,k

in terms of thehl ,ko
,40 gives, to second order in elements

Dk,
.

l l ,k;ko
5l l ,ko

1Dk•^hl ,ko
u@2 i“~ho!12hoko22iho“ #uhl ,ko

&v1uDku2^hl ,ko
uhouhl ,ko

&v

1 (
l 8Þ l

uDk•^hl 8,ko
u@2 i“~ho!12hoko22iho“ #uhl ,ko

&vu2

~l l ,ko
2l l 8,ko

!
. ~34!

If ko corresponds to an extremal point within the band structure, then the linearDk terms in the Eq.~34! are identically
zero. One can check that for theX-point conduction and valence band modes of Eq.~28! that this is indeed the case
Substituting the periodic functions of the conduction and valence band modes of Eq.~29! into Eq. ~34! gives, for the local
X-point band structure of the conduction band,

lc,k;kXi
5lc,kXi

1uDku2^hc,kXi
uhouhc,kXi

&v1

uDk•^hv,kXi
u@2 i“~ho!12hokXi

22iho“ #uhc,kXi
&vu2

DlX
, ~35!

whereDlX[(lc,kX
2lv,kX

).
nts
Fourier expandingho ,

ho5 (
G

h̃o,GeiG•ra
, ~36!

allows the band structure to be evaluated in terms of
Fourier coefficients of the dielectric PC. Sinceho is a lattice
periodic real function, G are reciprocal lattice vectors an
h̃o,G5(h̃o,2G)* . With the origin located at pointa of the
lattice @see Fig. 2~a!#, the hexagonal PC has aC6v symmetry.
As a result the Fourier coefficients of the hexagonal latt
are all real~inversion symmetry of the lattice!, and h̃o,2kX
e

e

5h̃o,2kXj
, for all kXi

,kXj
P!k. Also, as pointa lies within

the center of an air hole, the fundamental Fourier coefficie
of the lattice,h̃o,2kXi

, must be positive. Substituting Eq.~36!

into Eq. ~35! gives

lc,k;kXi
5lc,kX

1uDku2~ h̃o,02h̃o,2kX
!

1
4u~Dk•kXi

!u2~ h̃o,0!
2

DlX
, ~37!

where the indexi has been dropped fromkXi
in those quan-

tities that have the same value for each element of the!k.
4-6
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The band gap at theX point, DlX , may also be approxi-
mately determined in terms of the Fourier coefficientsh̃o,G .

The magnetic field eigenoperatorL̂H can be written as

L̂H52h̃o,0“
22 (

GÞ0
h̃o,GeiG•r@“ 21 i h̃o,GG•“ #.

~38!

TreatingDho5(GÞ0h̃o,GeiG•r as a perturbation to the ave
age dielectrich̃o,0 , and considering only the coupling be
tween the forward and backward normalized plane w
states at theX point, (ukXi

&,u2kXi
&), results in the following

two band magnetic field eigenoperator:

L̂H
Xi5S h̃o,0ukXu2 2h̃o,2kX

ukXu2

2h̃o,2kX
ukXu2 h̃o,0ukXu2

D . ~39!

The eigenvalues ofL̂H
Xi are h̃o,0ukXu26(h̃o,2kX

)ukXu2, which

gives for the band gap,DlX52(h̃o,2kX
)ukXu2.

Choosing a coordinate basisx̂i with x̂i orthogonal tokXi

and ŷi parallel tokXi
, allows us to write for the local band

structure of the conduction band in the vicinity of theXi
point,

lc,k;kXi
5lc,kX

1
Dkxi

2

mc,X,xi
*

1
Dkyi

2

mc,X,yi
*

, ~40!

with effective ‘‘masses’’41 defined as

1

mc,X,xi
*

5h̃o,0S 12
h̃o,2kX

h̃o,0
D ,

1

mc,X,yi
*

5h̃o,0S 12
h̃o,2kX

h̃o,0

1
2h̃o,0

h̃o,2kX

D . ~41!

For a PC formed from dielectric materials with real refra
tive indices greater than that of vacuum, 0<ho(r )<1. Con-
sequently,h̃o,0>0 andh̃o,0>2h̃o,G for all G. The effective
masses for the conduction band at theX-point are thus both
positive.

Evaluating the scalar and vector coupling matrix eleme
using theXi-point conduction band modes of Eq.~29! gives
Kl ,l(kXi

,kXi
,0)5ukXu2 and L l ,l(kXi

,kXi
,0)50. Substituting

these coupling matrix elements into Eq.~23!, the effective
Wannier potential is

Dh i ,i8 ~r !5ukXu2Dh~r !. ~42!

Lastly, upon substituting the local band structure of Eq.~40!
and the effective Wannier potential of Eq.~42! into Eq.~24!,
for the Wannier equation of the conduction band envelop
the i th X point we have
03521
e

-

ts

at

F ~ld2lc,kX
!2S 2¹xi

2

mc,X,xi
*

1
2¹yi

2

mc,X,yi
*

1ukXu2Dh~r !D GGc,kXi
~r !

50. ~43!

We now see from the Wannier-like equation for the cond
tion band edge at theX point that as a result of the positiv
effective mass coefficients, localized resonant modes
form for perturbations to the hexagonal lattice in whi
Dh(r ) is locally reduced, that is for which the refractiv
index is locallyincreased.

Here we consider a defect which results in an appro
mate harmonic perturbation potential. By appropriately va
ing the hole radii of a photonic crystal consisting of a he
agonal array of air holes in a host dielectric material, t
inverse of the filling fraction of the hexagonal crystal can
graded in a roughly parabolic fashion. The filling fraction
the lattice,f, as a function of air hole radius is

f 512
2p

A3
S r

aD 2

, ~44!

wherer is the hole radius anda is the nearest neighbor dis
tance between holes of the hexagonal lattice. For a hos
electric material of refractive indexno , the average dielec
tric constant of the patterned crystal isē5 f (no)2. The
slowly varying envelope ofho (ho), neglecting rapid varia-
tions on the scale of the lattice spacing, is proportional
1/f , ho5(no)22/ f . For an approximate harmonic potenti
then, the filling fraction of the lattice should vary as

1

f ~r!
5

1

f o
1kS r

aD 2

, ~45!

with r representing the radial distance from the center of
defect, f o the filling fraction given by the air hole radius a
the center of the defect, andk the lattice grading coefficient
The filling fraction as used here is a local approximatio
based upon the local hole radius, to the true filling fraction
a crystal lattice. The resulting slowly varying envelope of t
effective Wannier potential is

Dh8 i ,i~r!5kS r

aD 2S ukXu
no

D 2

. ~46!

The ground-state solution to Eq.~43! with the harmonic
effective potential of Eq.~46! is the 2D Gaussian,

Gc,kXi
~r !5 exp@2~xi

2/k21yi
2/g2!#, ~47!

with decay constants

1

k2
5

1

2
~ k̄ mc,X,xi

* !1/2,

1

g2
5

1

2
~ k̄ mc,X,yi

* !1/2, ~48!
4-7
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wherek̄5k(ukXu/ano)2.
From Eq.~44!, in order to obtain the parabolic grade

filling fraction the normalized hole radius of the defect cav
must vary withr as

S r

aD 2

5
A3

2p S 12 f o

1

11 f ok~r/a!2D . ~49!

With grading parameters given in Table I, the donor-ty
defect cavity we consider here is plotted in Fig. 3~a!. The
calculated parameters of the approximate envelope func
for the donor modes of this defect cavity are given in Ta
II.

The point group symmetry of the donor-type defect cav
of Fig. 3~a! centered about pointa of the hexagonal lattice is
that of the underlying hexagonal lattice,C6v . From the char-
acter values of the representation of theCBX

a basis under the
C6v point group,34 we find that this representation decom
poses asE1% B19 . Projecting the CBX

a basis onto its
IRREPs,35 a set of basis functions for the localized condu
tion band donor modes is found:

BB
19

a,d1
5ucX1

&Gc,kX1
2ucX2

&Gc,kX2
1ucX3

&Gc,kX3
,

BE1,1
a,d152ucX1

&Gc,kX1
1ucX2

&Gc,kX2
2ucX3

&Gc,kX3
, ~50!

BE1,2
a,d15ucX2

&Gc,kX2
1ucX3

&Gc,kX3
.

In Figs. 4~a! and 4~b! the magnetic field intensity is plotte
for the dipolelike modes of theE1 IRREP with envelope
functions given by theGc,kXi

of Eq. ~47!. The calculated

decay parameters for the GaussianGc,kXi
are tabulated in

FIG. 3. ~a! Graded hexagonal lattice donor-type cavity,~b!
graded hexagonal lattice acceptor-type cavity~parameters are given
in Table I!.

TABLE I. Hexagonal PC parameters for the donor- a
acceptor-type defect cavities.

cavity no S r

aD
o

f o k k̄/a2 S r

aD
e

h̃o,2kX

h̃o,0

donor 2.65 0.25 0.77 0.01 0.019 0.4 0.294

acc. 2.65 0.35 0.56 20.006 0.015 0.20 0.23
03521
e

n
e

-

Table II. Note that the coefficients of the expansion for ea
donor mode (ci) are determined solely by the transformatio
properties of the basisCBX

a ; the envelope functions trans
form effectively as the identity and do not modify the expa
sion coefficients. This holds in general for envelope fun
tions given by the ground-state solution of the Wannier-l
equation.34

For comparison, 2D FDTD simulations were perform
on the donor-type cavity of Fig. 3~a!. Details of the FDTD
calculation can be found in other work.37 Plots of the FDTD
calculated magnetic field patterns of the two modes m
deep within the first order band gap are given in Figs. 4~c!
and 4~d!. The modes transform as theB19 andB29 IRREPs of
the C2v point group~the FDTD simulation was performe
with mirror plane symmetries to reduce the size of the co
putation, thus projecting the modes onto theC2v IRREPs!,
equivalent to thex̂ and ŷ basis of theC6v IRREP E1 ~the
basis chosen for modesBE1,1

a,d1 andBE1,2
a,d1). Along with a match

of the symmetry of the modes, the FDTD generated fi
patterns also show good correspondence to the field patt
of the approximate symmetry analysis@Figs. 4~a!and 4~b!#.

A more quantitative estimate of the envelope of the FDT
generated localized modes can be obtained by conside
the form of the approximate symmetry analysis modes
Eqs.~50! and~27!. Multiplying a donor mode which contain
a dominant Fourier component atkXi

by cos (kXi
•ra) will

produce a term proportional toGc,kXi
, thus shifting the en-

velope to the origin in Fourier space. Applying a low-pa
spatial filter to the product of the mode and the cosine fu
tion will then leave only the envelope corresponding
Gc,kXi

. In Figs. 4~f!–4~h! we plot the result of such a proce

dure applied to the FDTD calculatedBE1,1
a,d1 (x-dipole! mode

@Fig. 4~e! shows a plot of the envelope calculated using
Wannier-like equation#. The FDTD generated envelope~cor-
responding toGc,kX1

) is oriented parallel tokX1
, and, as can

be seen from Figs. 4~g! and 4~h!, is Gaussian in nature. Th
fit decay parameters alongx̂i and ŷi directions are given in
Table III, and although smaller than estimated~Table II!,
they are in nearly the precise ratio predicted by the Wann
equation.

B. Acceptor modes at theJ point

As mentioned above, the valence band edge of the fun
mental band gap for TE-like modes occurs at theJ point of
the reciprocal lattice for the hexagonal PC. The degene

TABLE II. Donor mode (X point! ground-state Wannier enve
lope parameters.

mc,X,xi
* mc,X,yi

* k

a

g

a

7.7 0.72 2.3 4.1
4-8
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modes of the unpatterned waveguide which most stron
couple together to form the lowest frequency Bloch mode
the J point have magnetic field given approximately byB
5 ẑeikJi

•r. The !k at theJ point consists~not uniquely! of
$kJ1

,kJ2
%, and the group of the wave vector isGokJ

5C3v .
Using a similar procedure as that described above for
X-point Bloch modes of the fundamental band gap, gives
the approximate TE-likeJ-point valence band modes~with
point a taken as the origin!

FIG. 4. Magnetic field (ẑ-component! plot of the donor modes
of the graded hexagonal donor-type cavity:~a! the symmetry analy-
sis BE1,1

a,d1 (x-dipole! mode, ~b! the symmetry analysisBE1,2
a,d1

(y-dipole! mode,~c! the FDTD simulatedx-dipole mode, and~d!
the FDTD simulatedy-dipole mode. A comparison of~e! Wannier
and~f! FDTD envelope functions forBE1,1

d,a1 (x-dipole! donor mode.
~g! and ~h! shows line scans of the FDTD filtered envelope~solid

line! along thex̂ and ŷ directions, respectively. The Gaussian fit
the FDTD envelope along these principal directions are also plo
~dashed line!

.

03521
ly
at

e
r

VBJ
a5S vJ1

vJ2

D 5 ẑS eikJ1
•ra

1eikJ3
•ra

1eikJ5
•ra

eikJ2
•ra

1eikJ4
•ra

1eikJ6
•raD ~51!

andJ-point conduction band modes

CBJ
a5S c1J1

c2J1

c1J2

c2J2

D 5 ẑS e2 ikJ1
•ra

1e2 ikJ3
•ra

22e2 ikJ5
•ra

e2 ikJ1
•ra

2e2 ikJ3
•ra

e2 ikJ2
•ra

1e2 ikJ4
•ra

22e2 ikJ6
•ra

e2 ikJ2
•ra

2e2 ikJ4
•ra

D .

~52!

Note that the conduction band at theJ point is doubly de-
generate, the bands labeled asc1 andc2, also a property of
the numerically calculated band structure of Fig. 1~b!. The
normalized periodic functions of the above Bloch modes

hv,kJ1
5

1

A3
~11e2 i2kX1

•ra
1e2 i2kX2

•ra
!,

hv,kJ2
5

1

A3
~11e2 i2kX2

•ra
1e2 i2kX3

•ra
!, ~53!

hc1,kJ1
5

1

A6
~11e2 i2kX1

•ra
22e2 i2kX2

•ra
!,

hc1,kJ2
5

1

A6
~11e2 i2kX2

•ra
22e2 i2kX3

•ra
!, ~54!

hc2,kJ1
5

1

A2
~12e2 i2kX1

•ra
!,

hc2,kJ2
5

1

A2
~12e2 i2kX2

•ra
!. ~55!

The local band structure for the valence band at theJ1
point, upon evaluating Eq.~34! using the above approximat
J1-point valence and conduction band modes, is

d

TABLE III. FDTD calculated mode envelope parameters.

Mode
k

a Skx

a D g

a Sky

a D
BE1,1

a,d1 1.77 3.02
BA2

a,a1 4.65 4.52
BB2

a,a1 5.29 4.48
4-9
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lv,k;kJ1
5lv,kJ

1uDku2~ h̃o,012h̃o,2kX
!2S uDk•kJ2

u2
@2~ h̃o,0!

21 1
2 ~ h̃o,2kX

!212~ h̃o,0!~ h̃o,2kX
!#

DlJ

1
4

3
uDk•kX1

u2
@2~ h̃o,0!

21 1
2 ~ h̃o,2kX

!212~ h̃o,0!~ h̃o,2kX
!#

DlJ
D

5lv,kJ
1uDku2S h̃o,012h̃o,2kX

2
ukJu2@2~ h̃o,0!

21 1
2 ~ h̃o,2kX

!212~ h̃o,0!~ h̃o,2kX
!#

DlJ
D , ~56!
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whereDk5k2kJ1
. To second order in the elements ofDk

the local band structure around theJ1 point of the valence
band is centrosymmetric. As a result, the local band struc
in the neighborhood of each of theJ points of the!k is also
given by Eq. ~56!. In order to determine the sign of th
curvature of the valence band, the band gap at theJ point,
DlJ , is evaluated using a similar procedure as for the b
gap at theX point. The three band eigenoperator, in the n
malized plane wave basis of (ukJ1

&,ukJ3
&,ukJ5

&), is

L̂H
J15ukJu2S h̃o,0 2 1

2 h̃o,2kX
2 1

2 h̃o,2kX

2 1
2 h̃o,2kX

h̃o,0 2 1
2 h̃o,2kX

2 1
2 h̃o,2kX

2 1
2 h̃o,2kX

h̃o,0

D .

~57!

The eigenvalues ofL̂H
J1 consist of the single eigenvalu

lv,kJ
5ukJu2(h̃o,02h̃o,2kX

), and the double eigenvaluelc,kJ

5ukJu2(h̃o,01h̃o,2kX
/2). The band gap at theJ point is then,

DlJ5(3/2)h̃o,2kX
ukJu2. Substituting this value ofDlJ into

Eq. ~56! we have, for the local band structure at each of
J points,

lv,k;kJ
5lv,kJ

1
uDku2

mv,J*
. ~58!

where the effective mass of the valence band is

1

mv,J*
52

1

3
h̃o,0S 113

h̃o,2kX

h̃o,0

1
4@~ h̃o,0!

222~ h̃o,2kX
!2#

~ h̃o,0!~ h̃o,2kX
!

D .

~59!

As expected for the valence band, the effective mass is n
tive at theJ point.

The scalar and vector coupling matrix elements, evalua
using the J1-point valence band mode of eq.~53!, are
Kv,v(kJ1

,kJ1
,0)5ukJu2 and L v,v(kJ1

,kJ1
,0)50. The result-

ing effective Wannier potential at theJ point is given by

Dh i ,i8 ~r !5ukJu2Dh~r !. ~60!

With the local band structure of Eq.~58! and the effective
potential of eq.~60!, the Wannier equation of the valenc
band envelope at theJ point is
03521
re

d
-

e

a-

d

F ~ld2lv,kJ
!2S 2“

2

mv,J*
1ukJu2Dh~r !D GGv,kJ

~r !50.

~61!

Due to the negative effective mass coefficient, localiz
resonant modes will form for local perturbations to the he
agonal lattice in which the refractive index is locallyde-
creased. The acceptor-type defect is taken to consist o
grade in the radius of the air holes of the hexagonal crysta
defined in Eq.~49!, with grading coefficientk520.006. The
values of the parameters of the acceptor-type cavity
given in Table I and a plot of the acceptor-type cavity
shown in Fig. 3~b!.

As was the case for the donor-type cavity, this grade
the hole radius results in an approximate parabolic poten
well. Therefore, we take as our approximate ground-s
envelope function the Gaussian

Gv,kJ
~r !5 exp@2~r/k!2#, ~62!

with r5ur'u the in-plane radius, andk a single paramete
decay constant given by

1

k2
5

1

2
~ k̄ umv,J* u!1/2, ~63!

wherek̄5uku(ukJu/ano)2. The value ofk/a as calculated for
the acceptor-type defect of Figure 3~b! is given in Table IV.

From the character values of the representation ofVBJ
a

under theC6v point symmetry group,VBJ
a decomposes into

irreducible blocksA29% B29 . Projecting the basisVBJ
a onto its

IRREPS, the localized acceptor modes are

BA
29

a,a1
5uvJ1

&Gv,kJ
1uvJ2

&Gv,kJ
} ẑ@ cos~kJ1

•r !1 cos~kJ2
•r !

1 cos~kJ3
•r !#Gv,kJ

, ~64!

TABLE IV. Acceptor mode (J-point! ground-state Wannier en
velope parameters.

mv,J* k

a
5

kx

a
5

ky

a

20.68 4.44
4-10
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BB
29

a,a1
5uvJ1

&Gv,kJ
2uvJ2

&Gv,kJ

} ẑ@ sin~kJ1
•r !1 sin~kJ2

•r !1 sin~kJ3
•r !#Gv,kJ

,

where theGv,kJ
are equivalent for each element of the!k

due to the isotropic effective mass of theJ-point valence
band. A plot of the magnetic field (ẑ component! for the
symmetry basis modesBA

29
a,a1

andBB
29

a,a1
are given in Figs. 5~a!

and 5~b!.
2D FDTD simulations of the acceptor-type cavity of Fi

3~b! and Table I were also performed. The two deep

FIG. 5. Magnetic field (ẑ component! plots of the acceptor
modes of the graded hexagonal lattice acceptor-type cavity:~a!
symmetry analysisA29 mode,~b! symmetry analysisB29 mode,~c!
FDTD A29 mode, and~d! FFDTD B29 mode. Comparison of~e!
Wannier ~see Table IV! and ~f! FDTD envelope functions for the
BA2

a,a1 acceptor mode.~g! and ~h! show line scans of the FDTD

filtered envelope~solid line! along thex̂ and ŷ directions, respec-
tively. The Gaussian fit to the FDTD envelope along these princ
directions are also plotted~dashed line!.
03521
t

modes within the first order band gap are found to be ofA29
and B29 symmetry, the same symmetry as the modes p
dicted by the approximate analysis. Plots of the FDTD c
culated magnetic field patterns of these modes are give
Figs. 5~c! and 5~d!, again showing a strong resemblance
the approximately generated field patterns. Figures 5~e!–5~h!
shows a series of plots of the envelope (Gv,kJ1

) of the accep-

tor modeBA
29

a,a1
. The size and shape~isotropic! of the FDTD

calculated mode envelope corresponds very nicely with
approximate Wannier envelope as can be seen by the Ga
ian fits in Figs. 5~g! and 5~h! and the values of the fit deca
constants given in Table III. A similar envelope was e
tracted for modeBB

29
a,a1

, its fit decay constants given in Tabl

III as well.

IV. SUMMARY

A Wannier-like equation for photons in two-dimension
photonic crystal and slab photonic crystal structures is
rived. As in the case of electrons in a crystalline material,
curvature of the underlying band structure determines
effective mass of photon wavepackets. A quantitative relat
for the effective trapping potential for localized photon sta
is derived and shown to be proportional to the perturbat
of the inverse dielectric constant of the lattice and to
gradient. The Wannier-like equation, with an effective ma
tensor determined perturbatively from the Bloch modes
the band extrema, is used to calculate the approximate e
lope for localized TE-like modes of a parabolically grad
hexagonal photonic crystal defect cavity. The approxim
localized modes of both donor-type and acceptor-type
fects are considered, using a symmetry analysis to com
the dominant Fourier components of each mode formed
mixing of the degenerate satellite extrema. Numerical fin
difference time-domain calculations of the exact localiz
modes are also presented. For the cavities considered, a
correspondence between the exact numerical calculat
and the solutions to the approximate coupled Wannier-
equations is found.

The Wannier-like equation for the envelope of localiz
photon states in periodic dielectric structures puts on a m
solid foundation the concept of how localized donor and
ceptor modes are formed. Specifically, one may predict
symmetry and shape of the envelope of localized state
addition to their dominant Fourier components. More th
just building upon one’s intuition, this knowledge is of pra
tical importance to the integration and application of pho
nic crystal devices. As shown for the donor modes of
graded defect within the hexagonal photonic crystal,
highly directed envelope results in an in-plane radiation p
tern suited to coupling into external waveguides. In contra
for the acceptor modes of the hexagonal photonic crystal,
envelope is approximately isotropic resulting in an in-pla
radiation pattern much less amenable to waveguide coup
An understanding of the mode mixing involved in formin
localized resonant modes is also of great importance in
design of low-loss waveguides and high-Q resonant cavities

l
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of slab photonic crystals, where coupling to radiation mod
of the slab must be minimized.

APPENDIX: ELECTRIC AND MAGNETIC FIELD
EIGENOPERATORS

We begin with Maxwell’s equations in a~lossless! dielec-
tric medium free of currents and free charge,

“3E52 ivH,

“3H51 iv~n/c!2E,

“•~n2E!50, ~A1!

“•H50,

whereE andH are the harmonic complex electric and ma
netic fields, respectively, with time dependencee1 ivt ~the
physical fields are found by taking the real part of the co
plex fields!. The velocity of light in vacuum is represente
by c, and we have assumed that the material is non-magn
(m5mo). We also assume here that the dielectric funct
does not depend on spatial or temporal frequen
e(v,k,r )5eon2(r ). From the above Maxwell relations,
wave equation for both the electric and magnetic fields
be generated:

h~r !~“3“3E!5S v

c D 2

E, ~A2!

“3~h~r !“3H!5S v

c D 2

H, ~A3!

whereh(r )[1/n2(r ).

1. Two-dimensional photonic crystals

In a two-dimensional dielectric structure, or in a dielect
structure in which the refractive index does not vary in
third dimension (ẑ) orthogonal to the wave vector compo
nents of the field, the eigenmodes of Maxwell’s equatio
separate into two classes, transverse electric~TE! and trans-
verse magnetic~TM!. As we will be interested in extendin
our theory to quasi-2D systems consisting of weak vert
waveguides~slab waveguide photonic crystals!, we shall use
the convention that TE modes are those for which the m
netic field is a scalar field polarized along theẑ direction, and
the electric field is polarized in the plane of the 2D P
~transverseto the waveguiding direction!. Similarly for the
TM modes, the electric field is a scalar field polarized alo
the ẑ direction and the magnetic field has only compone
within the plane of the PC waveguide. For the fundamen
vertical waveguide modes of a 2D PC slab waveguide,
modes are onlyapproximatelyTE and TM in nature, the
polarization of the fields being exactly TE or TM in natu
only in the center of a symmetric slab PC waveguide. Fo
symmetric slab PC waveguide, the fundamental even mo
are TE-like and the fundamental odd modes are TM-li
From here on we make no distinction between the 2D
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the quasi-2D systems, realizing that in the case of
quasi-2D PC slab waveguides we have only an approxim
theory which neglects polarization mixing and all out-o
plane effects.

We begin with the TE modes in which the magnetic fie
is described by a scalar field,H5 ẑH. As we have assumed
that the refractive index does not vary~or the variation can
be approximately neglected! in the ẑ-direction, ]zh(r )50.
The Hermitian eigenvalue equation which results from E
~A3! and“•H50 is ~in the 2D case we only consider varia
tions with respect to the in-plane coordinates,“ [“' )

L̂H
TEH5lH, ~A4!

with the TE eigenoperator given by

L̂H
TE52~“h!•“ 2h“ 2. ~A5!

The eigenvalue,l, is related to the square of the frequen
of the mode,l5(v/c)2. As we consider TE-like modes o

~quasi-!2D PCs in the body of the text, the eigenoperatorL̂H
TE

and perturbations to it are the main concern of this articl
The situation is slightly more complicated for the TM

modes. In this case the electric field is a scalar field,E
5 ẑE. Unfortunately, the eigenoperator for the electric fie
is not Hermitian36 where the standard inner product of field
^EuE&[ * dr E* •E, is used. As in Refs. 27 and 28, a mod
fied metric which depends upon the dielectric constant m
be employed in describing a generalized Hermitian system
terms of the electric field. As an alternative to using t
scalar electric field in the case of TM modes, one may c
sider the vector magnetic field eigenoperator, and co
sponding effective Wannier potential, as discussed below
the case of three-dimensional photonic crystals.

2. Three-dimensional photonic crystals

In this case we must use a vector eigenoperator. For
sons discussed above, it is cleaner to consider the mag
field ~divergenceless field with a Hermitian eigenoperator
the case of non-magnetic materials!. The vector eigenopera
tor in the case of a three-dimensional dielectric system is

L̂H
3D52h“ 21~“h!3“ 3. ~A6!

As this operator is linear inh, a perturbation in the dielectric
given byDh results in the vector perturbation operator

L̂H8
,3D52Dh“ 21@“ ~Dh!#3“ 3. ~A7!

The only modification to the effective Wannier equatio
for a 3D PC is in the effective perturbation potential. Each
the components of the magnetic field are still multiplied by
single envelope function in the 3D PC case, however,
effective Wannier potential is more generally given as

Dh j ,i8,3D,H~r !5Dh~r !Kl ,l
3D,H~k i ,k j ,Gj ,i !

1@“~Dh~r !!#•L l ,l
3D,H~k i ,k j ,Gj ,i !, ~A8!
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Kl 8,l
3D,H

~k8,k,G!

52 E
v

d3r ~hl 8,k8!* •@eiG•r~“ 212ik•“ 2uku2!#hl ,k

[2^hl 8,k8ue
iG•r~“ 212ik•“ 2uku2!uhl ,k&v , ~A9!

*Electronic address: opainter@its.caltech.edu; URL: htt
www.its.caltech.edu/~aphhome/painter.html
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