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Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals
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In analogy to the Wannier equation for localized electronic impurity states in crystalline materials, a wave
equation for the envelope of the resonant optical modes of local defects within two-dimensional periodic
dielectric structures is derived. In the case of degenerate satellite extrema, this is generalized to a set of coupled
Wannier-like equations for a multienvelope system. The localized Wannier envelope solutions are then used in
conjunction with a group theoretical symmetry analysis to determine an approximate form for donor and
acceptor modes in a hexagonal photonic crystal. For an effective harmonic potential formed by varying the
filling fraction of the lattice, the localized resonant modes are explicitly calculated using the Wannier equation
and symmetry analysis, and a comparison to exact numerically computed modes is presented.
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I. INTRODUCTION erate a rigorous coupled-mode theory for nonunifgand
nonlineaj grating structures. These coupled-mode equations
Beginning with the first proposal of spontaneous emissiorare then used by the authors to describe an effective medium
controf? using three-dimensional photonic band gap materiin which the effective fields are the amplitudenvelopes
als in 1987 by Yablonovitch,there has been an increasing of the Bloch waves of the photonic crystal and the imaginary
interest in, and effort towards, applying multi-periodic high- regions of the effective refractive index are related to the
contrast dielectric and metallic structures for the diffraction,local band gap of the nonuniform grating.
guiding, and localization of light in optoelectronic applica- In this paper, in analogy to the study of localized impurity
tions. A particularly interesting geometry for such applica-states of electrons in periodic crystafs?® we look to de-
tions is that of planar two-dimension@D) photonic crystal velop a Wannier-likavave equatiorio describe the envelope
(PO slab waveguide structurés® where practical fabrica- of resonant modes of localized perturbations within periodic
tion issues are balanced against the extent of the attainabtielectric structures. This has been done previously, in a
photonic band gap. In such structures, local modificationsnore restrictive setting by Johnsat al?’, and more re-
(defects of the photonic lattice have been used to formcently in a general way by Charbonneau-Lefertal?® and
nanometer-scale lasefs® add-drop filters! and coupled- Istrateet al?® in the study of photonic crystal heterostruc-
cavity-waveguide systemd:1° tures. In these works, a wave equation for localized modes of
Most of the planar 2D PC structures to date have beemonuniform photonic crystals using an envelope approxima-
analyzed using numerical methods such as the finitedon has been developed; however, in each case the envelope
difference time-domaifFDTD) algorithm. These techniques equation was formulated as a generalized Hermitian eigen-
are extremely useful in providing accurate field profiles andvalue equation in terms of thedectric field and more impor-
frequencies, but are for the most part ineffective in motivat-tantly, localized modes formed from nondegenerate satellite
ing new and interesting device designs. One would hope textrema were only considered. In the analysis presented here
develop an approximate model of the properties of nonuniwe: (i) consider the magnetic field, arfd) incorporate the
form photonic crystals which depends more transparentlynixing amongst the degenerate peaks or valleys of the orbit
upon the dielectric lattice and its band structure. This ha®sf k in the band structure, resulting in a set of coupled
been largely accomplished by Russell and Bifk¥,where ~ Wannier-like equations describing a multienvelope system.
in analogy to the work on Bloch electron dynamtés®they  This allows us to more easily apply the envelope formalism
developed asemiclassicapicture of ray optic§Hamiltonian  to resonant cavity modes of PC slab waveguides, which in a
optic€Y) within nonuniform photonic crystals to study the two- or three-dimensional crystal mix Bloch modes near the
propagation of the optical envelofggy). In this formalism  degenerate satellite extrema of the orbikofWe also focus
the local band structure is used to arrive at a spatially varyin@n the magnetic field as it can be approximately treated as a
Hamiltonian, and the evolution of the optical envelope inscalar for TE-like polarization modes of PC slaBs tech-
real and reciprocal space is governed by Hamilton's equanologically important system owing to the large band gap
tions in which the conjugate momentum to tlieoarse obtainable for modes of this polarization in connected dielet-
grained spatial coordinates is taken as the crystal momeneric lattices. From the shape and symmetry of the envelope
tum k. This method has been used to describe in an elegaf a localized resonant mode, and its relation to the underly-
and intuitive way the properties of fiber Bragg gratings, 2Ding photonic band structure, one may better design such fea-
PC based wavelength-division multiplexing devices andures of planar 2D PC resonant cavities as in-plane and ver-
closed-orbit pathglocalized resonancgsA systematic for- tical emission, resonator-waveguide coupling, and the quality
malism, based upon the multiple scales method, has aldactor of resonant modes. In addition, the Wannier-like equa-
been developed by Sips al?! and de Sterket al??to gen-  tion for localized defect modes, more clearly and rigorously
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relates the curvature of the band structure to the formation of
donor and acceptor modes for different types of local pertur-
bations of a dielectric lattice.

The paper is organized as follows. In Sec. Il we derive a
set of coupled Wannier-like equations for the envelope func-
tions of localized TE-like states in planar 2D PC structures,
where, as predicted by the Wannier theorem, the underlying
band structure of the periodic dielectric structure gives rise to .
an effective mass tensor. We also derive an approximate form Defect Region— /2 waveguide (n=3.4) r xJ r
for the effective potential in the Wannier envelope equation
in terms of the local perturbation to the dielectric lattice. In
Sec._ Il we calculate an approximate symmetry basjs for th‘?node band structurer {a=0.36, Ny=Ney=2.65). The guided
TE-like BIOCh_ modes at the vaIen.ce and conducqon ban ode band-gap extends over a normalized frequency of 0.29-0.41.
edge_ O_f the first-order band gap 'n. a 2D photonic .CryStaLI'he air(cladding light line is shown as a solid black line.
consisting of a hexagonal array of air holes. From this sym-
metry basis we derive approximate relations for the effectivery;.jike modes of the PC slatas it is for these modes that a
mass tensor of the Wannier equation, and in conjunction witljgnificant frequency band gap opens up in the case of con-
a symmetry analysis used to determine the mixing among thRected dielectric lattices such as those used to form laser
degenerate satellite extrema, we find an approximate formgayitied® and optical waveguide¥.For the fundamental TE-
for the localized donor and acceptor modes of a hexagongje even modes the magnetic field can be approximated by

Iattl_ce with a pgrabohcally graded _f||||ng fraction. For com- its i-component normal to the plane of the slaly strictly
parison, numerical calculations using FDTD of the accepto( -4 in the horizontal mirror plane of a symmetric siab

and donor modes of such a defect cavity are also present his reduces the problem to an effective scalar field theory in

which H(r)=~zH(r,), with r, labeling the coordinates
Il. WANNIER THEOREM FOR PHOTONS IN PERIODIC within the horizontal plane of the sldlo simplify notation,
DIELECTRIC STRUCTURES from here on we drop thé label from the in-plane coordi-

In studying the localized electronic states associated witfates. The scalar field eigenvalue equation for the magnetic
impurities within a crystalline material it is often helpful to field in this quasi-2D approximation isee the Appendix
transform Schrdinger’s equation into Fourier space, sim- ATE
plify the set of coupled equations through the limited Fourier Ly Hg=NgHq, v
decomposition of the perturbing _potentlal, and then rwhere 4= (wq/C)?, g is the angular frequency of the de-
t_ransform back to real-space coqrdlnates where awave eqUasct mode ¢ the speed of light in vacuum, and
tion for the envelope of the localized states is generated. The
Wgnmer theorer? _captures the essence of this procedgre in ﬁLE: —V(5.+ A7)V —(7,+An) V2 @)
using the underlying energigrysta)momentum dispersion
generated by the periodic Coulombic potential of the crystaby, is given by the inverse of the the square of the refractive
in a spatially coarse-grained theory of electron dynamicsindex of the unperturbed photonic crystalm%(r), andA 7@
One application of the Wannier theorem is in the calculatiorrepresents the localized perturbation to3}/(r). The eigen-

of bound electronic states of crystal impuritfds?®2°The operatorZ,, (we drop the TE superscript from here)azan
basic form of the Wannier equation for the envelope of im- . . -
purity states is be separated into an unperturbed photpnlc crystal gart,
=—V(75,)-V —1,V? and a perturbation part due to the
~ S v _ 2
{[5—En(ﬁflp)]JrAV(r)}F(r):O, (1) defect,EH— V(A?]) \Y A?]V .
The (2D approximatg modes of the perfect crystal are
where &,(A'p) is the energycrystaimomentum disper- eigenmodes oLy, ,,
sion relation of thenth energy band with wave vectde

replaced by the canonical momentum operatr Ly oHi k=N kH k., (4)

=—iAV, AV(r) is the impurity potential, and'(r) is the \\here| |abels the band index aridlabels the in-plane crys-
envelope function describing the localized electronic state. (5| momentum. As theH, , are Bloch waves they can be
We would like to find a similar Wannier-like equation for |, iitten as ’

the envelope of localized photon states in periodic dielectric

lattices. Of particular interest are the localized resonant 1 ,

modes of planar 2D PCs formed in optically thin dielectric H|,k:[h|,k(f)e'k'r, 5
slabs(see Fig. 1L The fundamental TE-like even modes and

TM-like odd modes of a symmetric 2D patterned dielectricwith L2 equal to the area of the 2D photonic crystal and the
slab waveguide can be approximated by scalar fields. In whatet of periodic functionsh, \(r), at crystal momentunk,
follows we shall focus on the TE-like modéas discussed in  satisfying their own set of orthogonality relatiosormal-
the Appendix a similar theory may also be derived for theized over the lattice unit celt)

0

o °
S =2

normalized frequency (a/A.)
o
N

FIG. 1. (a) lllustration of the two-dimensional hexagonal PC
slab waveguide structuréb) Fundamental TE-likgeven guided
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1 - Note that a reciprocal lattice vector was not includedjin,
(hir il by = I fv drhy, \hik=3di. 6 as bothk’ andk (through the localized nature of tiig) are
assumed to lie within a neighborhood of one of the wave

In forming a defect state by perturbing the lattice in avectors comprising thexk, which by definition are not
localized region of space, the Bloch modes in proximity tolinked by a reciprocal lattice vector. Equatitit) then sim-
the degenerate satellite extrema of a band edge{khe plifies to
=1,2,... M} points of thexk (from here on reference to
the xk refers implicitly to the orbit of this band edgeare
most strongly coupled togethét: ci(ha= A Ti(k 2 Cj E (Hir g | Z5H) )

Ho=2 ¢ 2 "fmk—ki)%hl,keik'f. (7 xTj(k—k;)=0. (13

fi are a set of Fourier space envelope functions, which, in Fourier expanding the defect perturbation in reciprocal

the spirit of the effective mass theory, have amplitudes IocaISpaCe

ized aroundk=k;. Note that throughout this analysis the

band of interest at the band edge is considered to be nonde- — iK'y

generate and we negleictterband mixing?® An(r)= kE Anee™
Assuming that thé, , do not vary significantly(using a

similar argument as in Ref. 24ver the range of each Fou-

rier space envelope function,

(14)

we can write for the mode-mixing terr<j1-||,vk,|ﬁ,’4H,,k> in

Eq. (13):
oD~ S coh, e Ti(Ak)e* |, (8 o
d(r) ZI i Mk, (% i(Ak) (8 (Hir el Z4H, 0
here Ak=k—k;. Writing th I functi [ | N ,
\évpae(:g, i riting the envelope functions in real =—E 2 N k)RALnZk szr Qi (kKK
k" i=1 v

— T iAk-T
Li(r)= % I (Ak)e ) 9 th’,k’[iku.(v +ik)+V2+2ik~V—|k|2]h|‘k>

allows us to rewrite Eq(8) as

=> > [A70K, (k' k,G)

Hd(n)~ 2 ci%h.,kie‘ki'f Li(r). (10 C
' + A7 (iK") - Ly 1 (K K, G) 18 —rs 6 ko (15

It is in this way that the real space envelope of localized
defect modes can be interpreted in the Fourier doffi@isa  Where theG are reciprocal lattice vectors, and we have de-
result of theintraband mixing of the unperturbed Bloch fined scalar and vector coupling matrix elements as
modes of the crystal.

Returning to Eq.(2), we now proceed to find an eigen- Ky (k' k,G)
value equation for the envelope functions. Multiplying both
sides of Eq(2) by H,: «+, wherek’ is chosen in a neighbor-
hood ofk;, and integrating over the in-plane spatial coordi-
nates gives

1 :
- Ef d2rei®Th% | (V 2+2ik-V —[K[)hy

=—(hys o] €CT(V2+2ik-V —[K[D)|hy ), (16)
; Cj ; T‘j(k_kj)<HI’,k’|()\d_)\I,k_2|’-|)Hl,k>:0' and
(11)

Using the orthonormality of the Bloch waves and the nor- Ly (k' k,G)=— lf d2rel®Th* (V +ik)h,
malization of their periodic parts described in E6), ’ v Jy Ik '

N =—(hy eV +ik)lh ), (A7)
<HI’,k/|(7\d_7\I,k)HI,k>:()\d_)\l,k)PZl el kiR,
' Substituting Eq.(15) into Eq. (13), keeping only terms
that mix states within théth band, results in the following
J dthﬁkrhukei(k*k')'r:(Xd—?w/,k')5|',|5k',k- (12) 2332§;n§pace representation of the magnetic field master
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Gk~ N Tk =k i (AN M AKDT (8K~ 3 [E 70K (K1 ki ,0)
kH

-~ % > ch” {[A 7K (K K —K"+G,G) B
oK A (iK") Ly (ki ki 01T (Ak—K")

F AR (ik")-Ly (K" k' —k"+G,G)]

XTj[(k'—K"+G)—k;]}=0. (18 —;_ ¢; > (A (ki K, Gji)+ Apn(ik”)
1#] K"
For defect perturbations which are localizeckispace as ‘Liatkioky Gy )T L(AKT Gy i = Ak; ) =K"]) =0,
well as in real space, all things being equal the strongest (22)

mixing terms will be those withk” nearest the origin. As
such, a further simplification can be made by including onl
those reciprocal lattice vectofd which minimize the mag-
nitude ofk” in coupling the different neighborhoods of the
=k (satellite extrempa The local mixing of states within the
neighborhood of eack; will thus be dominated by the Fou-
rier components ofA z about the origin withG=0. Simi-
larly, the mixing between neighborhoodslgfandk; , where C{[ANg— N[ (A 1p) 1= A7/ . (r)}i(r)

i #j, will be dominated by a singl& which minimizes the ’ '

magnitude of the vectdd — (k; —k;). Writing this reciprocal —i(Gy —AK; )T A ey
lattice vector asG;; and onlyi including the dominant cou- B 2 ICRR A7;i(N)T;(r) =0,
pling terms in Eq(18) collapses the sum ov&, and yields

whereAN3=\4—\| , is the eigenvalue referenced to the top
Y(bottom of the band edge, andik; =k, —k; .

Equation(21) is the Fourier space representation of an
approximate master equation for the localized magnetic field
envelope functions of defect states. Transforming back to
real space results in a set of coupled Wannier-like equations,

(22

] B Anj',i(r)zAn(f)Ku[(ki ki, Gj i)
Cil(Ag= Ny ) Ti(K = ki) — % [A Ky (K ki ,0) TV (An(r)]-Lyki k.G, (23
F A (iK™ Ly (ki ki, OV ITH[ (K" — k") —ki] wherep=—i4V as in quantum mechanics, andy/ (r) is

an effective perturbation potentiatalid for TE-like modes;

_ —_ the A dix for the TM
=S oS ek (ki kG SR ik 06 e Appendix for the TM case

< = Assuming that the amplitude of the relatively large Fou-
rier components ofA z(r) associated with mixing of states
Lyy(ki k; ,Gj,i)]f'j{[k’ —(k"=Gj;)1-k;H=0, between neighborhoods differentsatellite points of theck
(19 are much smaller than the amplitude of the small Fourier

components which mix states within a given neighborhood
of a point of thexk, we can treat thénter-k; mixing as a
where we have neglected the variatiorkof, andL, , within perturbatlon to t(r)le e_nvelope functions fprmed _from the local
the local neighborhoods of the e xk. ’ ‘ k-space mixing® This allows us to write an independent
Wannier-like equation for each of tHe(r) envelope func-

Implicit in the derivation of Eq.(19)is that theT“i are  tions

localized around thg; in reciprocal space. In order to make

this explicit (which will be necessary when transforming ([ANG=N[ (A~ 1p)]=An! ()} (r)=0. (24)
back to real-space coordinate® expand\, . in the vicin- b b '
ity of eachk;, Of most importance for the types of resonant cavities

studied here are the ground-state solutions to(E4). This
is due to the relatively localized nature of the defect regions.
N =~[N o+ {(AK)]+O(AK?), (200 For de-localized defect regions extending over many lattice
periods a more extensive set of envelope functions, including
) higher order functions with added nodes and antinodes must
where ), is the top (bottom of the band edgeAk=k’'  pe included. Choice of such a set of envelope functions will
—ki, and\(; only contains terms up to second order in depend on the geometry of the boundary of the defegbr
elements ofAk.* In the case of thosk; located at an ex- the present work then, we takg(r) equal to the ground-
trema of a givennondegenerajeband the resulting disper- state envelopd;; o(r).
sion relation may be written in the form\/;(Ak)=Ak As the ground state of a system is in general invariant
-M; - Ak, where the matriM, , is an effective mass ten- under the symmetries of the Hamiltonian of that syster,
sor defined by the curvature of the band. Substituting Eqthe ground-state envelope function should transform as the
(20) into Eq. (19) gives identity of the point symmetry group of the Wannier-like
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"(g’*’ oa plane wave modul& within the dielectric lattice, is for the
4 X, J, andI' points of the hexagonal lattic®,, , C5,, and

o oints
K, G, Cs, , respectively’

b Sl

Ky, ky,

6

A. Donor modes at theX point

/ For the frequency bands defining the first-order band-gap,
AN the unpatterned waveguide modes which are most strongly
ky, kT % coupled together to form the Bloch modes at ¥point are
ran in our quasi-2D picture given bp=ze'kx "1, with r, cor-
responding to coordinates within the symmetry plane of the
FIG. 2. lllustration of the(a) real and(b) reciprocal spaces of dielectric slab(for what follows we drop thet in labeling
the two-dimensional hexagonal PCaf|=|a,|=a, |G,|=|G,  the symmetry plane coordinajeShe unperturbed frequen-
—4n/\3a, |ky=2m/\3a, |k,]=4m/3a). The high-symmetry Ci€s of these modes are degenerate and can be written as
points of the hexagonal lattice, referenced to the center of an aimy~C|Kx|/Ne, Whereney is an effective index taking into
hole, area=(0,0), b=(a/2,0), andc=(0,a//3). account the vertical waveguiding perpendicular to the slab.
The xk at theX point, which is formed from the indepen-
equation given in Eq(24) The Spatia| Symmetries of Eq. dent satelliteX points within the IBZ, COﬂSiStH]Ot- unique_ly
(24) are those of/ (%~ 1p) and A7/ (r). As discussed in ©f Wave VeCtorS{kxl’sz{sz}’ all other X points being
Ref. 34, it then follows that the point symmetries of the €quivalent modulo a reciprocal lattice vector. A symmetry
Wannier-like equation for the ground-state envelope funcbasis for the modes of the patterned slab waveguide at the
tions are given bﬁ’ﬂgﬁi, whereg’ is the point group of X1-satellite point, the irreducible representatichi@REPS

. of the little group at theX point, can be found by applying
the d,efgct pertur_batlomlnde_pendent _of the crystal lattice the symmetry operations of the group of the wave vector
and gki is the point group isomorphic to the group of the

. ) ] (Gok,=C,,) to the seed vectdB,_ . In this case, the basis is
wave vector(of the underlying Bravais lattice, not the crys- . XI B. B Proiecii Xlth' v basi ¢
tal) at the pointk; in the first Brillouin zone(IBZ). With this ~ SIMPY ( kx, ! *kxl)' rojecting this symmetry basis onto
knowledge the coefficients; of the defect state in Eq10)  the IRREP spaces @,, yields

can then be determined using symmetry arguments. R
BXl= ky -r?
Ay zcos(ky, -1 ),

I1l. ENVELOPE FUNCTION CALCULATION X, o~ .
_ _ _ Bgr=zsin(ky, - ré), (25
Here we will consider two examples of how the Wannier- !
like equation of the previous section can be used to calculatehere A, and B, label the IRREP spaces @,, (see Ref.
an approximate envelope function for localized photon stat&4), and the indexa is used to denote the location of the
in a hexagonal lattice photonic crystal. The first exampleorigin within the hexagonal latticemarked in Fig. 23)]. As

consists of a localized donor-type mode formed at the bantche magnetic field oBi; overlaps strongly with the air holes

edge occurring at thX point of the reciprocal lattice where ¢ o PC(its the electric field lying largely in the dielectjic

the band structure _has a I_ocal minimum and is. given by % describes the lower frequency “valence” band mode, while
simple paraboloid in a neighborhood of the point. The %1 describes the “conduction” band mode. This is a result
second example is that of a localized acceptor-type modEBl '

formed from thel-point where the band structure has a localof the tendency for modes with the electric field concentrated
maximum. within regions of high dielectric constant to be lower fre-
For the hexagonal lattice, the high symmetry pointsquency than those with the electric field concentrated in low
within and on the boundary of the IBZ are the $xpoints  dielectric regions?
({=(0,1)ky, t(\/§/2,1/2)<x, t(\/§/2,— 1/2)ky}), the six In order to fully define the modes at tbepoint all modes
J points =+ (1/2,4/3/2)k;, *(1/2,—3/2)ky, = (1,0)k;}), of the xk must be included. The point symmetry operations
and thel’ point=(0,0). The first-order band gap of the hex- pf the full point group of the hexagonal lattice not included
agonal latticd see Fig. 1b)] is defined from above by thg N the group of the wave vector, the coset generators, may k_)e
point and below by thd point. In analogy to the electronic Used to generate the modes of all the degenerate satellite
bands in semiconductor crystals we term the high frequencpoints within thexk. In the case of the point this corre-
band defining the first-order band gap the “conduction”SPonds to successive rotations #§6 (Ce rotation. The re-
band, and the low frequency band the “valence” band. In thesult is the following set of three degeneratepoint valence
approximate analysis of the defect states to follow we willPand modes:
need to include all the degenerate satellite pe@kdence

a
band and valleys(conduction band For the hexagonal lat- ! cos(kxl-r )
tice the different degeneraté and degeneraté points on VBi=| vx, | =z| cos(kx, ), (26)
IBZ boundary are labeled as in Fig(k2. The group of the a
wave vector, which defines the point group symmetry of a UXs cos(kxs-r )
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and X-point conduction band modes, mitian operator acting on the space of periodic functions at
) A pointk in the reciprocal lattice, for the quasi-2D case studied
CB3=| Cx, | =z| sin(ky, 1% | . (27)

. Lyye=—V (7o) (ik+V )+ (k|2 2ik-V =V 2),
Cx, sin(ky, % (30

Separating the plane wave and periodic parts of the abowith an associated eigenvalue equation given by
Bloch modes allows us to write

- Ly khy =Ny khy - (32)
vy =5(1+e 12k, ) @lhx As in “k-p” theory for Bloch electrons in crystalline mate-
rials, we expandCy , about pointk,,
Cxi:E(l_e_mkxw'ra)eikxi'ra, (28) EH k:Z:Hk +2|/—1 " (32)
with normalized periodic functions given by with
— —i2ky -r@ ~
ok = (LN2)(1+ 7270, Ely = 1ol K2+ AK- [~ 1V (75) + 2 5Ko— 20 7,V 1.
(33
e, =(1i2)(1- e 21, (29

Trea‘tingﬁ,’Mk as a perturbation t&H,kO, and expandindy, \

i 40 ~; .
We now use the above set of modes to calculate the local terms of theh, , ,"" gives, to second order in elements of
dispersion of the conduction band at tkepoint. The Her- Ak,

Nk, =Ny, FAK-(hy e [[=1V (776) +270ko = 20 76V 110y i )+ [AKIZCDy [ 70]D1 i )

|AK-(hy y [[=TV(70) + 2770k = 2 76V Ty i) |?

(34
11 Nk, = Mrk,)

If ko, corresponds to an extremal point within the band structure, then the Iideserms in the Eq(34) are identically
zero. One can check that for thépoint conduction and valence band modes of E2) that this is indeed the case.
Substituting the periodic functions of the conduction and valence band modes (9 dnto Eq. (34) gives, for the local
X-point band structure of the conduction band,

|Ak' <hv,kx‘|[_iv(7/o) + 27'/okxi_2i 770V ]lhc,kxi>u|2
)\c,k~kxi:)\c,kx‘+|Ak|2<hc,kxi|770|hc,kxi>v+ ANy ) (39

where AN x=(Nc i, ~ v,

Fourier expandingy, , =7, 2, » for all ky ky e xk. Also, as pointa lies within

the center of an air hole the fundamental Fourier coefficients
No= % }O’GeiG-ra, (36)  ofthe lattice, 7 70,2, must be positive. Substituting E(R6)

into Eq. (35) g|ves

allows the band structure to be evaluated in terms of the Mek—ko =Ne kot |1 AKIA(70.0— 770 2.)

Fourier coefficients of the dielectric PC. Singg is a lattice TN X ' X

periodic real function, G are reciprocal lattice vectors and 4)(AK-ky )20 0)2
70.6=(70_c)*. With the origin located at poina of the + ' — (37)

lattice[see Fig. 2a)], the hexagonal PC hasGg, symmetry. Ay
As a result the Fourier coefficients of the hexagonal latticewhere the index has been dropped froky in those quan-

are all real(inversion symmetry of the latti¢geand 7 70,2y tities that have the same value for each element ofxthe
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mately determined in terms of the Fourier coefficientss - " sl " i kx| %A n(r))
The magnetic field eigenoperatgy, can be written as

The band gap at th¥ point, ANy, may also be approxi- _y2 _y2
()\d_)\c,kx)_< 1_‘c,kxi(r)

exx  Mexy;
=0. (43)

We now see from the Wannier-like equation for the conduc-
(39 tion band edge at th¥ point that as a result of the positive
~ ) effective mass coefficients, localized resonant modes will
TreatingA 7,=2¢.070,c8'° " as a perturbation to the aver- form for perturbations to the hexagonal lattice in which
age dielectric}}o,o, and considering only the coupling be- A#(r) is locally reduced, that is for which the refractive
tween the forward and backward normalized plane wavéndex is locallyincreased
states at th& point, (kx.),| —kx.)), results in the following Here we consider a defect which results in an approxi-
two band magnetic field eigenoperator: mate harmonic perturbation potential. By appropriately vary-
ing the hole radii of a photonic crystal consisting of a hex-
agonal array of air holes in a host dielectric material, the

Ly==700 = 2, 70ce'® [V 2417066 V].

A 770,0|kx|2 —7lo,z<x|kx|2 inverse of the filling fraction of the hexagonal crystal can be
H=l ~ W2 , | (39 graded in a roughly parabolic fashion. The filling fraction of
B 7’0’ka| x 70,0l Kx the lattice,f, as a function of air hole radius is
Ay ~ ~ 2
The eigenvalues ot)H(' are 7,0/ kx| (770,2,) [kx|?, which fo1_ 2m(r (44)
gives for the band gapy\ x= 2 (7 a,) [kx|*. V3la

Choosing a coordinate basts with X; orthogonal toky ~ Wherer is the hole radius and is the nearest neighbor dis-
' tance between holes of the hexagonal lattice. For a host di-
electric material of refractive inder,, the average dielec-

tric constant of the patterned crystal &=f(n,)%. The

and §/i parallel tokxi, allows us to write for the local band
structure of the conduction band in the vicinity of the

point, . . . .
slowly varying envelope of;, (7,), nheglecting rapid varia-
2 2 tions on the scale of the lattice spacing, is proportional to
Aks Ak§. — 25 . . )
Nt =Aept L L (40) 1/f, n,=(ny) </f. For an approximate harmonic potential
CHTHY TOKx b xx m:,x,yi then, the filling fraction of the lattice should vary as
with effective “masses*! defined as 1 1 p\2
= =, 45
- o . a 43
1 - 7]0,2ky
T = Mool 1—= ; with p representing the radial distance from the center of the
Me x,x 70,0

defect,f, the filling fraction given by the air hole radius at
the center of the defect, arkdthe lattice grading coefficient.

1 _ ";,O’Z,(x 2700 The filling fraction as used here is a local approximation,
" =700l 1—= +=—]. (41 based upon the local hole radius, to the true filling fraction of
Me .y, 0,0 o,y a crystal lattice. The resulting slowly varying envelope of the

. . . . effective Wannier potential is
For a PC formed from dielectric materials with real refrac-

tive indices greater than that of vacuums@,(r)<1. Con- — p\2[|ky| |2
sequently; 77, 0=0 and7, ¢=27, ¢ for all G. The effective An'ii(p)=k 3 N ) : (46)
masses for the conduction band at ¥point are thus both
positive. The ground-state solution to E¢A3) with the harmonic

Evaluating the scalar and vector coupling matrix elementeffective potential of Eq(46) is the 2D Gaussian,
using theX;-point conduction band modes of E@9) gives
K|’|(kxi,kxi,(:)):|kxlz. and Ll'l(kxikai’o)zo' Substituti.ng Fc,kx(r): exp[_(XiZ/KZ_i_in/,yZ)], (47)
these coupling matrix elements into E@3), the effective ‘
Wannier potential is with decay constants

Al () =Ik2A 7(r). (42 == S M)

Lastly, upon substituting the local band structure of &) “
and the effective Wannier potential of E¢2) into Eq.(24), 1 1
for the Wannier equation of the conduction band envelope at =2k mty )2 (48)
theith X point we have Y e
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TABLE |. Hexagonal PC parameters for the donor- and TABLE Il. Donor mode X poinf) ground-state Wannier enve-
acceptor-type defect cavities. lope parameters.

r

a

r

a

* *
% mc,X,xi mc,X,yi

cavity n, fo K k/a?

o e 70,0

N | lx
A IR

0.72
donor 2.65 0.25 0.77 0.01 0.019 04 0.294

acc. 2.65 035 0.56 —0.006 0.015 0.20 0.23

Table 1. Note that the coefficients of the expansion for each
wherek= k(|ky|/ang)2. donor mode ¢;) are determined solely by the transformation

From Eq.(44), in order to obtain the parabolic grade in Properties of the basi€Bj; the envelope functions trans-
filling fraction the normalized hole radius of the defect cavity form effectively as the identity and do not modify the expan-

must vary withp as sion coefficients. This holds in general for envelope func-
tions given by the ground-state solution of the Wannier-like

) equatior?*
r V3 For comparison, 2D FDTD simulations were performed

a (49

_E( 1_f°1+fok(p/a)2)' on the donor-type cavity of Fig.(8). Details of the FDTD
calculation can be found in other wotkPlots of the FDTD
With grading parameters given in Table I, the donor-typecalculated magnetic field patterns of the two modes most
defect cavity we consider here is plotted in Figa)3 The deep within the first order band gap are given in Figs) 4
calculated parameters of the approximate envelope functiognd 4d). The modes transform as tlBd andB) IRREPS of
for the donor modes of this defect cavity are given in Tablethe C,, point group(the FDTD simulation was performed
II. with mirror plane symmetries to reduce the size of the com-
The point group symmetry of the donor-type defect cavitypytation, thus projecting the modes onto thg, IRREPS,
of Fig. 3@ centered about poira of the hexagonal lattice is equivalent to thex andy basis of theC,, IRREPE, (the
that of the underlying hexagonal lattidgg, . From the char- basis chosen for mod 1(1% andB%ﬁ%). Along with a match

acter values of the representation of @B} basis under the .

Cq, point group® we find that this representation decom- of the symmetry of the modes, the FDTD generated field

poses asE;®B!. Projecting the CBZ basis onto its patterns also .show good correspondence to the field patterns

IRREPs® a set of basis functions for the localized conduc-Of the approximate symmetry analysfsigs. 4a)and 4b)].

tion band donor modes is found: A more quantitative estimate of the env_elope of the F_DTD
generated localized modes can be obtained by considering

the form of the approximate symmetry analysis modes of

Eqgs.(50) and(27). Multiplying a donor mode which contains

a dominant Fourier component bpi by cos kxi-ra) will

Baé’ld,i=2|0xl>rc,kxl+|Cx2>rc,kxz—|cx3>rc,kxs, (50) produce a term proportional Iﬁcykxi’ thus shifting the en-
velope to the origin in Fourier space. Applying a low-pass
spatial filter to the product of the mode and the cosine func-

Bg'lcf§=|cxz)l"c,kx +|cx3>l“c,kX . tion will then leave only the envelope corresponding to
: : Tk, - In Figs. 4f)—4(h) we plot the result of such a proce-

a,d1

BB,l, :|CX1>Fc,kX1_|CX2>Fc,kX2+|CX3>Fc,kX31

In Figs. 4a) and 4b) the magnetic field intensity is plotted dure applied to the FDTD calculateBﬁf} (x-dipole) mode
for the dipolelike modes of thé&, IRREP with envelope [Fig. 4(e) shows a plot of the envelope calculated using the
functions given by thel’c\ of Eq. (47). The calculated  Wannier-like equatioh The FDTD generated envelopeor-
decay parameters for the Gaussiﬁgkx are tabulated in responding td—‘c,kx) is oriented parallel tdxxl, and, as can

i 1

be seen from Figs.(d) and 4h), is Gaussian in nature. The

(m £00000QR0OO0D
00DOCOCVUO0O0

B CLLLCOLLEL fit decay parameters along andy; directions are given in
Do;o;:ogoggggozgogogggzgggo;’ugo;oO Table Ill, and although smaller than estimat€hble lI),
[ =)o)} 20 QQoo - . . . .
RLI LR IR they are in nearly the precise ratio predicted by the Wannier
00000000AC00D00000000 .
0 0B000C0600506000 00 equation.
CO0O0QOOCHOQO000000
CO00COCO00C000
VOOV 0OCOOOT00000
0000000000000 O0
SO000CO00CC0
0000000000000 X
YRAARR B. Acceptor modes at theJ point
FIG. 3. (3 Graded hexagonal lattice donor-type cavith) As mentioned above, the valence band edge of the funda-
graded hexagonal lattice acceptor-type ca(jigrameters are given mental band gap for TE-like modes occurs at dhgoint of
in Table . the reciprocal lattice for the hexagonal PC. The degenerate
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8(a) s (b) " TABLE Ill. FDTD calculated mode envelope parameters.

8 06 6| 06

4 0.4 4 04 [k «
=2 .- bz 2 T o2 Mode e Z Ry
29 .S - b &0 r o ala, ala
2 - 02 reey 02 dl

4 I BE; 1.77 3.02

N o o By i 4.65 4.52

-8 08 _g| 0.8 Ba al 529 448

8 6 4 2 0 2 4 6 8 ? 8 6 4 -2 0 2 4 6 8 a
x (a=1) X (a=1
L "

3(c) s (d) os

6 0.6 6| 06 . . .

4 0.4 4 0.4 A le ~ elk‘llAra'f‘eIkJ3Ara+elkJ5Ara ( )
< " =7 02 VB3= =z 51
D a~ o J . a a a
&0 = b 40 un o vy, eika, Ty kg, T34 kg T
>.72 [ 02 7y .

-4 04 4| 04

B 8 . and J-point conduction band modes

-8 - 8 !

8 6 4 20 2 4 6 8 B 8642 o 2 76 8 ?
x (a=1)

ik .r@ ik .r@ i .y

C:I.J1 e ijlr +e |kJ3r —2e |k35r
—i a . a
a C2J1 . e |kJ1-r —e |kJ3.r

CBj= =7 ) a . A . .-

Cl‘]2 e*|k‘]2'f +eflk\]4~r _Ze—|kJ6.r

0232 e iky, 18 giky,r®
(52

Note that the conduction band at tlepoint is doubly de-
generate, the bands labeledcdsandc2, also a property of
the numerically calculated band structure of Fi¢h)1The
normalized periodic functions of the above Bloch modes are

(9 —a

hv,kJ (1+e |2kX r+e |2kX2r)

&IH

1

o o
108 6 4 2 0 2 4 6 8 10 8 6 4 -
x (a=1)

hyk, = 7= (1+e 1% e T, (53)

ol

FIG. 4. Magnetic field i-componer)t plot of the donor modes
of the graded hexagonal donor-type cavig):the symmetry analy-
sis B dl (x-dipole) mode, (b) the symmetry analys&%%f%
(y- dlpole) mode, (c) the FDTD simulatedk-dipole mode, andd)
the FDTD simulated/-dipole mode. A comparison dg) Wannier
and(f) FDTD envelope functions foIBd al 1 (x-dipole) donor mode.
(g) and (h) shows line scans of the FDTD filtered enveldgelid
line) along thex andy directions, respectively. The Gaussian fit to
the FDTD envelope along these principal directions are also plotted
(dashed ling

—i ra i !
hor, = —=(1+e 12 —2e712% ™),

ol -

hCl,kJZZ (1+e—i2kxz.ra_Ze—i2kx3~ra)’ (54)

ol -

1 ‘ a
heow, = = (1—e7 2 "),

modes of the unpatterned waveguide which most strongly L2

couple together to form the lowest frequency Bloch modes at

the J point have magnetic field given approximately By 1

=27e'%5". The xk at theJ point consistsnot uniquely of heox, = —(1—e 12T, (55)

{ky,.ky,}, and the group of the wave vector By, =Cs, - : 2

Using a similar procedure as that described above for the

X-point Bloch modes of the fundamental band gap, gives for The local band structure for the valence band atlhe

the approximate TE-like-point valence band moddswith  point, upon evaluating Eq34) using the above approximate

point a taken as the orign J4-point valence and conduction band modes, is
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Ny ke = ho i, F |AKI%(76,0 270 2,) — ( |Ak-kg,|?

PHYSICAL REVIEW B 68, 035214 (2003

[2(70,0%+ 3 (10,2,) >+ 2(776,0) (70,21, ]
AN,

o L[2(70,0°+ %(770,2kx>2+2(710,o>(7;o,2kx>])
+§| : Xll A)\J
S~ - [K3I2[2(70,0°+ 7 (70,20 >+ 2(776,0) (70,26, ]
:)\U,kJ+|Ak| 770,04—2770,2()(_ A)\J ’ (56)
|

WhereAk=k—kJ1. To second order in the elements ®k _v2
the local band structure around the point of the valence (Ng=Noi,) | —— F1kg[?A ﬂ(f)) I', k,(r)=0.
band is centrosymmetric. As a result, the local band structure v.J (61)

in the neighborhood of each of tl¥gpoints of thexk is also
given by Eg.(56). In order to determine the sign of the
curvature of the valence band, the band gap atltpeint,

AN, is evaluated using a similar procedure as for the ban%
gap at theX point. The three band eigenoperator, in the nor-

malized plane wave basis ofkj, ), k;,), k), is

~ 17 17
70,0 T 2Mo2ky T 2702y
~J 1~ ~ 17
[:le |kJ|2 ~ 270,y 70,0 20,2k
_ 17 _ 17 ~
2 70,2k 2 Mo, 2ky 70,0

(57)
The eigenvalues oniJH1 consist of the single eigenvalue
Noie, = K3l (70,0~ 70,2,)» and the double eigenvalue,
=1K;|?(76,0 70,2,/2). The band gap at thepoint is then,
A)\J=(3/2)7;oyz<xlkj|2. Substituting this value ofA\; into
Eq. (56) we have, for the local band structure at each of th
J points,

|AK|?

*
mv,J

Ny k= Ny, T (58)

where the effective mass of the valence band is

1

*
U,

1

- Moz, 476,02~ 2(70,2,)°]
== §770,0

1+3—= +
70,0

my. (76,0 (70.26,)

(59

Due to the negative effective mass coefficient, localized
sonant modes will form for local perturbations to the hex-
gonal lattice in which the refractive index is localiie-
creased The acceptor-type defect is taken to consist of a
grade in the radius of the air holes of the hexagonal crystal as
defined in Eq(49), with grading coefficienk= —0.006. The
values of the parameters of the acceptor-type cavity are
given in Table | and a plot of the acceptor-type cavity is
shown in Fig. 8b).

As was the case for the donor-type cavity, this grade in
the hole radius results in an approximate parabolic potential
well. Therefore, we take as our approximate ground-state
envelope function the Gaussian

re

Iy x,(r)= exp[ — (p/x)?], (62
with p=|r,| the in-plane radius, ang a single parameter
edecay constant given by

2

1
Z(k m* 1/2,
X 2( | v,J|)

(63)
wherek=|k|(|k;|/an,)2. The value of«/a as calculated for
the acceptor-type defect of FigurébBis given in Table IV.

From the character values of the representatioiv Bf
under theCg, point symmetry groupy B§ decomposes into
irreducible blocksA7® B . Projecting the basi¥ B onto its
IRREPS, the localized acceptor modes are

. . a1 5
As expected for the valence band, the effective mass is negdBZZ =lvs )Ty, F v )y k<2l cos(ky, - 1)+ cos(ky, )

tive at theJ point.

The scalar and vector coupling matrix elements, evaluated

using the J;-point valence band mode of ed53), are

Ky.o(Ky ko, 00=1k,|* and L, ,(kj,,k;,,0)=0. The result-

ing effective Wannier potential at thepoint is given by
Al i(r)=|k;|*An(r). (60)

With the local band structure of E¢58) and the effective
potential of eq.(60), the Wannier equation of the valence
band envelope at thé point is

03521

+cos(ky, NIT, ks (64)

TABLE IV. Acceptor mode {-point) ground-state Wannier en-
velope parameters.
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o, ylE
DR D NN O N s O

o Y=
R D NN O N s O

L e
R AN DO N B Y D

o e
DR O AN O N B O D

x (a=1)

¢) R

(h) — filter

= = fit

-10 -8 6 -4 —2(0 )2 4 6 8 10

x (a=1

FIG. 5. Magnetic field Z component plots of the acceptor
modes of the graded hexagonal lattice acceptor-type cataly:
symmetry analysi®\; mode, (b) symmetry analysi®) mode, (c)
FDTD A7 mode, and(d) FFDTD B’ mode. Comparison ofe)
Wannier (see Table IY and (f) FDTD envelope functions for the
B;i'zal acceptor mode(g) and (h) show line scans of the FDTD

filtered envelopgsolid line) along thex and§/ directions, respec-
tively. The Gaussian fit to the FDTD envelope along these principa

directions are also plotte@ashed ling

a,al
B

B} RELERLNT Sl LENIAS

oci[ sin(kjl-r)+ sin(kJ2~r)+ sin(kJS-r)]FUVkJ,

where theFU,kJ are equivalent for each element of th&
due to the isotropic effective mass of tlepoint valence
band. A plot of the magnetic fieldi(componervt for the
andB2" are given in Figs. &)

. 1
symmetry basis modé&,,

and %b). ’

"
BZ
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modes within the first order band gap are found to bé&bf
and B symmetry, the same symmetry as the modes pre-
dicted by the approximate analysis. Plots of the FDTD cal-
culated magnetic field patterns of these modes are given in
Figs. 5c) and 5d), again showing a strong resemblance to
the approximately generated field patterns. Figutes-5(h)
shows a series of plots of the enveloﬂéj,((h) of the accep-

tor modeBi’,?l. The size and shapésotropig of the FDTD

2
calculated mode envelope corresponds very nicely with the
approximate Wannier envelope as can be seen by the Gauss-
ian fits in Figs. %g) and §h) and the values of the fit decay

constants given in Table Ill. A similar envelope was ex-

tracted for modeB22", its fit decay constants given in Table
B
2

Il as well.

IV. SUMMARY

A Wannier-like equation for photons in two-dimensional
photonic crystal and slab photonic crystal structures is de-
rived. As in the case of electrons in a crystalline material, the
curvature of the underlying band structure determines the
effective mass of photon wavepackets. A quantitative relation
for the effective trapping potential for localized photon states
is derived and shown to be proportional to the perturbation
of the inverse dielectric constant of the lattice and to its
gradient. The Wannier-like equation, with an effective mass
tensor determined perturbatively from the Bloch modes at
the band extrema, is used to calculate the approximate enve-
lope for localized TE-like modes of a parabolically graded
hexagonal photonic crystal defect cavity. The approximate
localized modes of both donor-type and acceptor-type de-
fects are considered, using a symmetry analysis to compute
the dominant Fourier components of each mode formed by
mixing of the degenerate satellite extrema. Numerical finite-
difference time-domain calculations of the exact localized
modes are also presented. For the cavities considered, a good
correspondence between the exact numerical calculations
and the solutions to the approximate coupled Wannier-like
equations is found.

The Wannier-like equation for the envelope of localized
photon states in periodic dielectric structures puts on a more
Folid foundation the concept of how localized donor and ac-
ceptor modes are formed. Specifically, one may predict the
symmetry and shape of the envelope of localized states in
addition to their dominant Fourier components. More than
just building upon one’s intuition, this knowledge is of prac-
tical importance to the integration and application of photo-
nic crystal devices. As shown for the donor modes of the
graded defect within the hexagonal photonic crystal, the
highly directed envelope results in an in-plane radiation pat-
tern suited to coupling into external waveguides. In contrast,
for the acceptor modes of the hexagonal photonic crystal, the
envelope is approximately isotropic resulting in an in-plane
radiation pattern much less amenable to waveguide coupling.
An understanding of the mode mixing involved in forming

2D FDTD simulations of the acceptor-type cavity of Fig. localized resonant modes is also of great importance in the
3(b) and Table | were also performed. The two deepestlesign of low-loss waveguides and higGhresonant cavities
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of slab photonic crystals, where coupling to radiation modeshe quasi-2D systems, realizing that in the case of the

of the slab must be minimized. quasi-2D PC slab waveguides we have only an approximate
theory which neglects polarization mixing and all out-of-
APPENDIX: ELECTRIC AND MAGNETIC FIELD plane effects. . _ o
EIGENOPERATORS We begin with the TE modes in which the magnetic field

is described by a scalar fielth=2zH. As we have assumed
that the refractive index does not vafyr the variation can

be approximately neglectgdn the z-direction, d,7(r)=0.

We begin with Maxwell's equations in @ossless dielec-
tric medium free of currents and free charge,

VXE=—iwH, The Hermitian eigenvalue equation which results from Eqg.
(A3) andV-H=0 is (in the 2D case we only consider varia-
VXH=+iw(n/c)%E, tions with respect to the in-plane coordinat¥s=V | )
V- (n%E)=0, (A1) LIEH=\H, (A4)
V-H=0, with the TE eigenoperator given by
whereE andH are the harmonic complex electric and mag- ELE: —(Vy)-V—75V2 (A5)

netic fields, respectively, with time dependere€“! (the
physical fields are found by taking the real part of the com-The eigenvalue), is related to the square of the frequency
plex fields. The velocity of light in vacuum is represented of the mode\ = (w/c)?. As we consider TE-like modes of

by ¢, and we have assumed that the material is non- magnett%uasBZD PCs in the body of the text, the elgenoperzﬁﬁ'?
g'“ Ho)- W% also dassume herel that the d'eleTt”f function, 4 perturbations to it are the main concern of this article.
oes not depend on spatial or temporal Irequency, rpe gjyation is slightly more complicated for the TM

2
€(w,k,r)=e€n*(r). From the above Maxwell relations, a .\ qes |n this case the electric field is a scalar fiéid,
wave equation for both the electric and magnetic fields can L5E. Unfortunately, the eigenoperator for the electric field

be generated: is not Hermitiari® where the standard inner product of fields,
w2 (E|E)= [ dr E*-E, is used. As in Refs. 27 and 28, a modi-

7(r)(VXVXE)= (E) E, (A2)  fied metric which depends upon the dielectric constant may

be employed in describing a generalized Hermitian system in

terms of the electric field. As an alternative to using the

2
VX(5(r)VxH)= (2) H, (A3)  scalar electric field in the case of TM modes, one may con-
c sider the vector magnetic field eigenoperator, and corre-
where 7(r)= 1/n2(r). sponding effective Wannier potential, as discussed below in

the case of three-dimensional photonic crystals.

1. Two-dimensional photonic crystals ) ) )
2. Three-dimensional photonic crystals

In a two-dimensional dielectric structure, or in a dielectric
structure in which the refractive index does not vary in a

third dimension %) orthogonal to the wave vector compo-
nents of the field, the eigenmodes of Maxwell’s equation
separate into two classes, transverse ele€tiit) and trans-
verse magneti€TM). As we will be interested in extending
our theory to quasi-2D systems consisting of weak vertical ~3D_ 2
waveguidegslab waveguide photonic crystalsve shall use Ly ==V +(VyXV X. (AB)
the convention that TE modes are those for which the magag this operator is linear im, a perturbation in the dielectric
netic field is a scalar field polarized along theirection, and given by A # results in the vector perturbation operator
the electric field is polarized in the plane of the 2D PC

(transverseto the waveguiding direction Similarly for the c/ 30— AV 24+[V (Ap)]XV X. (A7)
TM modes, the electric field is a scalar field polarized along

the z direction and the magnetic field has only components The only modification to the effective Wannier equation

within the plane of the PC waveguide. For the fundamentafor a 3D PC is in the effective perturbation potential. Each of
vertical waveguide modes of a 2D PC slab waveguide, thé¢he components of the magnetic field are still multiplied by a
modes are onlyapproximatelyTE and TM in nature, the single envelope function in the 3D PC case, however, the
polarization of the fields being exactly TE or TM in nature effective Wannier potential is more generally given as

only in the center of a symmetric slab PC waveguide. For a

symmetric slab PC waveguide, the fundamental even modes»/*>"(r)=A n(n) KPP (k; k;,G; )

are TE-like and the fundamental odd modes are TM-like. 3D.H

From here on we make no distinction between the 2D and +[V(An(r)]-L77 " (ki K, Gy ), (A8)

In this case we must use a vector eigenoperator. For rea-
sons discussed above, it is cleaner to consider the magnetic
field (divergenceless field with a Hermitian eigenoperator in
%he case of non-magnetic materjalshe vector eigenopera-
tor in the case of a three-dimensional dielectric system is
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KoMk k,G) LMk k,G)
=— f d3r(hys o )* - [€C (V24 2ik-V —[K[?)]hy =— J d3r(hyr o )* X[€'CT(V X +ikx)]hy
=—(hy, 1/|€CT(V2+2ik-V —|k|)|h )y, (A9) =—(hys 10 |€CT(V X +ikX)|hy ). (A10)
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