This book has been written using gaussian cgs units throughout, except for a few formulas that are explicitly quoted in practical units for convenience in applications. This choice conforms to that in the first edition and to that used in much of the physics literature on which the book is based. Moreover, because of the central role of \(\mathbf{B} \) and \(\mathbf{H} \) in superconductivity, it is especially convenient to have \(\mathbf{B} = \mathbf{H} \) in vacuum and the natural form \(\mathbf{E} = (\mathbf{v}/c) \times \mathbf{B} \) for the electric field associated with a moving flux density.

For readers who are more comfortable with SI or mksa units, we reproduce in Table A.1 a version of the convenient tabular conversion guide given in the appendix of J. D. Jackson, Classical Electrodynamics, Wiley, New York, 1975, p. 819. To convert any formula from gaussian to SI units, follow these rules: Symbols for mass, length, time, force, and other quantities that are not specifically of an electromagnetic nature are unchanged. Symbols for electromagnetic quantities listed under “gaussian” in Table A.1 are replaced on both sides of the equation by the corresponding symbols listed under “SI.” The reverse transformation can also be made. To illustrate this procedure, we consider a few important examples.

The flux quantum \(\Phi_0 = hc/2e \) in gaussian units. Following Table A.1, the left-hand side of this equation becomes \(\sqrt{4\pi/\mu_0} \Phi_0 \) and the right-hand side becomes \(h(1/\sqrt{\mu_0 \varepsilon_0})(\sqrt{4\pi \varepsilon_0/2e}) \). After canceling common factors, one obtains \(\Phi_0 = h/2e \), which defines the flux quantum in SI units. Similar manipulations applied to the GL relation (4.20) relating the flux quantum to the product of \(H_c \xi \lambda \) leave the form of the equation unchanged, except that the notation \(H_c \) must be replaced by \(B_c \) because \(\Phi_0 \) is a quantum of magnetic flux or induction, not
TABLE A.1
Conversion table for electromagnetic formulas

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Gaussian</th>
<th>SI (mkSa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity of light</td>
<td>c</td>
<td>$\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$</td>
</tr>
<tr>
<td>Magnetic induction or flux density</td>
<td>B</td>
<td>$\sqrt{\frac{4\pi}{\mu_0}} B$</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>H</td>
<td>$\sqrt{4\pi \mu_0} H$</td>
</tr>
<tr>
<td>Magnetization</td>
<td>M</td>
<td>$\sqrt{\frac{\mu_0}{4\pi}} M$</td>
</tr>
<tr>
<td>Charge density (or charge, current, current density, polarization)</td>
<td>ρ (or Q, I, J, P)</td>
<td>$\frac{1}{\sqrt{4\pi \varepsilon_0}} \rho$ (or Q, I, J, P)</td>
</tr>
<tr>
<td>Electric field (or potential, voltage)</td>
<td>E (or ϕ, V)</td>
<td>$\sqrt{4\pi \varepsilon_0} E$ (or ϕ, V)</td>
</tr>
<tr>
<td>Displacement</td>
<td>D</td>
<td>$\sqrt{\frac{4\pi}{\varepsilon_0}} D$</td>
</tr>
<tr>
<td>Conductivity</td>
<td>σ</td>
<td>$\frac{\sigma}{4\pi \varepsilon_0}$</td>
</tr>
<tr>
<td>Resistance (or impedance)</td>
<td>R (or Z)</td>
<td>$4\pi \varepsilon_0 R$ (or Z)</td>
</tr>
<tr>
<td>Inductance</td>
<td>L</td>
<td>$4\pi \varepsilon_0 L$</td>
</tr>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>$\frac{C}{4\pi \varepsilon_0}$</td>
</tr>
<tr>
<td>Permeability</td>
<td>μ</td>
<td>$\frac{\mu}{\mu_0}$</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>ε</td>
<td>$\frac{\varepsilon}{\varepsilon_0}$</td>
</tr>
</tbody>
</table>

field. Similarly, the condensation energy per unit volume $F_s = F_0 = H^2_c / 8\pi$ becomes $\mu_0 H^2_c / 2$ or $B^2_c / 2 \mu_0$ in SI units, and the London penetration depth $\lambda = \sqrt{m c^2 / 4\pi n_0 e^2}$ becomes $\sqrt{m / \mu_0 n_0 e^2}$. The definition of the coherence length ξ is unchanged because it does not involve electromagnetic quantities, but only \hbar, m, and the GL coefficient α, all of which are unchanged.
NOTATION FOR MAGNETIC FIELDS. Because of the ubiquity of magnetic fields in the subject of superconductivity, special notational conventions are common to simplify the discussion. We follow the convention of de Gennes (and others) and use \(\mathbf{h}(\mathbf{r}) \) to denote the local value of the magnetic induction or flux density, which typically varies on the scale of the penetration depth \(\lambda \). We reserve the use of \(\mathbf{B} \) to denote the value of \(\mathbf{h} \) averaged over such microscopic lengths but still capable of varying smoothly over the macroscopic dimensions of the sample.

In normal metal or vacuum, of course, there is no microscopic variation of \(\mathbf{h} \) (we neglect the Landau diamagnetism and Pauli paramagnetism), so \(\mathbf{B} = \mathbf{h} \). In these cases, \(\mathbf{B} = \mathbf{H} \), so all three symbols denote equal quantities, and may be used interchangably.

In the Meissner state of a massive superconductor, \(\mathbf{h} \) is reduced to zero within a penetration depth \(\lambda \) of the surface by supercurrents in the skin layer, as described by the Maxwell equation

\[
\text{curl} \mathbf{h} = \frac{4\pi J_{\text{total}}}{c} \tag{A2.1}
\]

Hence, \(\mathbf{B} = \mathbf{h} = 0 \) deep inside. On the other hand, \(\mathbf{H} \) is governed by the Maxwell equation

\[
\text{curl} \mathbf{H} = \frac{4\pi J_{\text{ext}}}{c} \tag{A2.2}
\]
where J_{ext} represents a nonequilibrium current and excludes currents arising from the equilibrium response of the medium, such as those in the penetration depth described by the London equations. Hence, curl $\mathbf{H} = 0$, and the tangential component H_t is constant through the skin depth, retaining the value of $H_t(=B_t = h_t)$ found outside the sample. If the sample is ellipsoidal, H inside is uniform and everywhere equals the equatorial value of H_t. This H_t will in general exceed the uniform applied field H_0 by a factor $(1 - \eta)^{-1}$, where η is the shape-dependent demagnetizing factor of the sample. [See the discussion associated with (2.20).]

In the intermediate state of a type I superconductor, which is reached when $H_t = H_c$, the magnitude of h varies continuously (on the scale of λ) between H_c in the normal lamina and zero in the superconducting ones. B is the average of this h over the laminar structure, and it is constant within an ellipsoidal sample. The magnitude of \mathbf{H} must be H_c for coexistence of superconducting and normal regions to be possible. These interrelations are illustrated in Fig. 2.3.

In the mixed state of a type II superconductor in a magnetic field above H_{cm}, h varies on the microscopic scale of the vortex structure, whereas B is the average of h over the structure. In the ideal equilibrium case, H is again everywhere equal to H_t at the equatorial surface. In the presence of transport currents and of disequilibrium due to flux pinning, H will vary because curl \mathbf{H} is no longer zero. This situation is discussed more fully in connection with (5.48) in the text.

NOTATION FOR ELECTRIC FIELDS. For notational symmetry, we also can define a microscopically varying electric field $\mathbf{e}(\mathbf{r})$, whose macroscopic average is \mathbf{E}. But because curl $\mathbf{e} = -(1/c)\partial \mathbf{h}/\partial t$, \mathbf{e} is uniform in static situations, and it must be zero in equilibrium. Thus, the distinction between \mathbf{e} and \mathbf{E} arises less frequently than the distinction between \mathbf{h} and \mathbf{B} (which can result from equilibrium supercurrents); consequently, we have normally used \mathbf{E} for both to avoid confusion between \mathbf{e} and the electronic charge e. The notation \mathbf{e} is introduced only to describe the electric field distribution about a moving vortex, where the macroscopic average \mathbf{E} is quite different from \mathbf{e} and gives the physically important resistive voltage.

SIGN OF THE ELECTRON CHARGE. Fortunately, the sign convention for the electronic charge is often immaterial since only its square enters into such quantities as the penetration depth or normal conductivity. Also, in the definition of quantities such as the flux quantum $\Phi_0 = hc/2e$ or the Josephson frequency $2eV/h$, it is convenient as well as conventional to take e to be a magnitude. However, when the sign of the charge matters, we have chosen to follow de Gennes in adopting the convention that e is the charge of the electron, including its sign; i.e., $e = -|e|$. This means that a metal island with n excess electrons on it has a charge ne, not $-ne$, and the supercurrent density is simply $n_e \mathbf{v}_s$, rather than $n_e(-e)\mathbf{v}_s$. This convention simplifies many expressions, and seems more physical. It has the disadvantage of being contrary to the convention used in such popular textbooks as *Introduction to Solid State Physics* by Kittel and *Solid State Physics* by Ashcroft and Mermin, in which the charge of the electron is written as $(-e)$, so that e always refers to a magnitude.
A convenient technique for obtaining an exact expression for the penetrating magnetic field, and hence for the penetration depth, is to apply Fourier analysis to \mathbf{J} and \mathbf{A}, and to use (3.101) to obtain a self-consistent solution. Only a one-dimensional Fourier analysis is required since J_x and A_x are functions only of z for the penetration of a magnetic field B_z parallel to a planar surface. Some care is needed in handling the surface, however, since our expressions for the response function $K(q)$ are valid only in an infinite medium. This problem is handled by the mathematical artifice of introducing externally supplied source currents in the interior of the infinite medium to simulate the field applied at a surface.

Consider, e.g., the case in which electrons are assumed to be specularly reflected at the surface. If one introduces a current sheet

$$J_{x,\text{ext}} = -\frac{c}{2\pi} B_0 \delta(z)$$

(A3.1)

this introduces a discontinuity $2B_0$ in h_y. This can be taken symmetric about zero, so that h_y switches from $-B_0$ to $+B_0$. Now when the superconductive medium is introduced, its diamagnetic currents will screen out these fields in a length λ (to be determined). Note that electrons passing through this plane at $z = 0$ without
scattering have had a past exposure along their trajectory to a vector potential exactly the same as that seen by electrons specularly reflected at the surface in the actual case since $\mathbf{A}(-z) = \mathbf{A}(z)$. (See Fig. A3.1.) Thus, the net supercurrent induced in them should also be the same, and the simulation should be effective.

Having replaced the surface by a current sheet in an infinite medium, we now may proceed to use the response function $K(q)$ worked out for that case. We first note that

$$\nabla^2 \mathbf{A} = -\text{curl} \ \text{curl} \ \mathbf{A} = -\text{curl} \ \mathbf{h} = -\frac{4\pi}{c} \mathbf{J}_{\text{total}} = -\frac{4\pi}{c} (\mathbf{J}_{\text{ext}} + \mathbf{J}_{\text{med}})$$

For the qth Fourier component, this becomes

$$q^2 a(q) = \frac{4\pi}{c} \mathbf{J}_{\text{ext}}(q) - K(q) a(q)$$

Solving for $a(q)$, we have the general result

$$a(q) = \frac{(4\pi/c)\mathbf{J}_{\text{ext}}(q)}{K(q) + q^2} \quad (A3.2)$$

For the current sheet (A3.1), $\mathbf{J}_{\text{ext}}(q) = -cB_0/4\pi^2$, and we drop the vector notation since \mathbf{J} and \mathbf{A} have only an x component. Thus,

$$a(q) = \frac{-B_0/\pi}{K(q) + q^2}$$

FIGURE A3.1

Simulation of surface with specular reflection by source-current sheet. (a) Magnetic field in normal (dashed) and superconducting (solid) states. (b) Vector potential in normal (dashed) and superconducting (solid) states. London gauge is used in superconducting state. (c) Electron trajectories. The solid curve shows trajectory with specular reflection; the dashed parts show extensions into the other half-space, with current-sheet simulation.
We are more interested in \(h = \text{curl} \mathbf{A} \), so that \(h_y(q) = i q a(q) \). Integrating over all the Fourier components, we obtain

\[
 h(z) = \frac{B_0}{\pi r} \int_{-\infty}^{\infty} \frac{q e^{i q z}}{K(q) + q^2} \, dq = \frac{2B_0}{\pi} \int_{0}^{\infty} \frac{q \sin qz \, dq}{K(q) + q^2} \tag{A3.3}
\]

For any \(K(q) \), (A3.3) gives the true dependence of \(h \) on \(z \), which will not be exactly exponential unless \(K(q) = \) constant, as in the London theory. For example, the \(h(z) \) computed with the \(K(q) \) for either the Pippard or BCS theory actually changes sign deep in the interior, where \(|h(z)| \ll B_0 \).

To get the penetration depth, as usually defined, we integrate (A3.3):

\[
 \lambda = B_0^{-1} \int_{0}^{\infty} h(z) \, dz = \frac{2}{\pi} \int_{0}^{\infty} \frac{q \sin qz \, dq \, dz}{K(q) + q^2}
\]

or

\[
 \lambda_{\text{spec}} = \frac{2}{\pi} \int_{0}^{\infty} \frac{dq}{K(q) + q^2} \tag{A3.4}
\]

(In carrying out the integration on \(z \), one can replace \(\int_{0}^{\infty} q \sin qz \, dq \) by its average value, unity, since as \(Z \to \infty \), the oscillatory part effectively averages to zero in the subsequent integration over \(q \).)

Given (A3.4), we can compute \(\lambda_{\text{spec}} \) for any model of superconductivity which determines a \(K(q) \). For example, in the London theory, \(K(q) = 1/\lambda_L^2 \). Then

\[
 \lambda_{\text{London, spec}} = \frac{2}{\pi} \int_{0}^{\infty} \frac{dq}{\lambda_L^{-2} + q^2} = \lambda_L \tag{A3.5}
\]

In the Pippard theory, one has

\[
 K_p(q) = \frac{1}{\lambda_L^2 \xi_0} \left\{ \frac{3}{2(q \xi)^3} \left[(1 + q^2 \xi^2) \tan^{-1} q \xi - q \xi \right] \right\} \tag{A3.6}
\]

This is found from (3.117) with \(J_p(R, T) = e^{-R/\xi} \) by using the general relation (3.106). If instead one approximates the BCS kernel even more closely by \(J(R, T) \approx J(0, T) \exp \left[-J(0, T) R/\xi_0 \right] \), as discussed in the argument leading to (3.123), the effect is simply to replace \(\xi_0 \) by \(\xi_0' = \xi_0/J(0, T) \) everywhere in (A3.6), including in the definition (3.121) of \(\xi \). As remarked in Chap. 3, these rather convenient, generalized Pippard forms provide quite a serviceable approximation to the exact numerical results of BCS. However, even with the analytic expression (A3.6) for \(K(q) \), numerical integration is required to compute the penetration depth by using (A3.4).

In order to avoid numerical calculations, considerable attention has been given to two limiting cases in which analytic results can be obtained, even though the true situation usually lies in between.
The local approximation replaces $K(q)$ for all q by $K(0)$, a constant, thus reducing the problem to the London form, but in general with a modified penetration depth. Using the generalized Pippard approximation

$$K(0, T) = \lambda_L^{-2} \left[1 + \frac{\xi_0}{J(0, T) \ell} \right]^{-1} \quad \text{(A3.7)}$$

one finds

$$\lambda(T) = \lambda_L(T) \left[1 + \frac{\xi_0}{J(0, T) \ell} \right]^{-1/2} \quad \text{(A3.8)}$$

as anticipated in (3.123). This approximation is reasonably well justified in dirty superconductors [if $\ell < \lambda(T)$], in high-temperature superconductors, and even in pure classic superconductors very near T_c where $\xi_0 < \lambda(T)$.

The other approximation is the extreme anomalous limit, in which $K(q)$ is replaced for all q values by its asymptotic form for $q \to \infty$, where $K(q) \sim 1/q$. This approximation is reasonably well justified if $\lambda_L \ll \xi_0$ because then the dominant contribution to (A3.4) will come from the q values in which this asymptotic form is valid. Figure A3.2 illustrates the two different approximations to $K(q)$. Since both approximations exceed the true $K(q)$ for some q and never err in the other direction, both will lead to lower bounds to the true value for λ.

Let us now carry out the calculation in the extreme anomalous limit. For complete generality, we write

$$K(q) = \frac{a}{q}$$

where in the Pippard theory $a = 3\pi/4\lambda_L^2 \xi_0$, whereas in either the BCS theory or the generalized Pippard theory, ξ_0 is replaced by ξ_0' so that a is increased by a factor of $J(0, T)$. If we introduce the standard notation λ_∞ for the value of λ in this limit, (A3.4) becomes

$$\lambda_{\infty, \text{spec}} = \frac{2}{\pi} \int_0^\infty dq \frac{dq}{(a/q) + q^2}$$

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figA3.2}
\caption{Schematic comparison of local and extreme anomalous approximations to the exact nonlocal response function $K(q)$.}
\end{figure}
Making a change of variable to $x = q^2/a$, we obtain

$$\lambda_{\infty, \text{spec}} = \frac{2}{3\pi a^{1/3}} \int_{0}^{\infty} \frac{x^{-1/3} \, dx}{1 + x} = \frac{4}{3\sqrt{3} a^{1/3}}$$

Inserting the value for a, we have

$$\lambda_{\infty, \text{spec}} = \frac{8}{9} \frac{3^{1/6}}{(2\pi)^{1/3}} (\lambda_{L}^{2} \xi_{0}^{2})^{1/3} = 0.58 (\lambda_{L}^{2} \xi_{0}^{2})^{1/3} \quad (A3.9)$$

which has exactly the form anticipated in (3.130) by an elementary argument. Since the BCS correction factor $(\xi_{0}^{2}/\xi_{0})^{1/3} = [J(0, T)]^{-1/3}$ to the simple Pippard form varies smoothly from 1 at $T = 0$ to 0.91 at T_{c}, it has little effect on the behavior of the result.

If the surface scattering is taken as diffuse instead of specular, formulas are obtained that differ only in detail from those given above. In this case, the prescription for handling the surface is simply to cut off the integration over r' at the surface in the coordinate-space form (3.117) of the response function. The physical reasoning is that electrons coming to r from the surface do so with no memory of any previous exposure to the field. When this prescription is transcribed into Fourier transform language, it turns out that (A3.4) is replaced by

$$\lambda_{\text{diff}} = \frac{\pi}{\int_{0}^{\infty} \ln[1 + K(q)/q^{2}] \, dq} \quad (A3.10)$$

Although this looks quite different from (A3.4), it actually gives exactly the same result in the local approximation, and for λ_{∞} it differs from (A3.9) only in that the factor of $8/9$ is missing. Thus, there is little difference in the results for these two different limiting assumptions about the surface scattering.
BIBLIOGRAPHY

While in no way exhaustive, the following list includes many of the standard references for further reading, with a brief indication of their individual features. Within each broad category, these are listed in reverse chronological order. However, it should be noted that many of the older references are classics which are still widely used.

Monographs

Schrieffer, J. R.: *Theory of Superconductivity*, W. A. Benjamin, New York (1964). A good account of the theory by one of its founders, including Green's function topics, which are not included in this book.

Collections

Parks, R. D. (ed.): *Superconductivity*, two vols., Dekker, New York (1969); reissued by the publisher in 1992. This two-volume treatise, with chapters written by two dozen distinguished authors on their special areas of interest, is the most comprehensive available treatment of the subject as it stood in 1968.

Review articles

A review of the status of detailed calculations.

Applied Superconductivity Conference proceedings

The proceedings of the biennial Applied Superconductivity Conferences provide an ongoing source of up-to-date surveys of the state of the field. Some of the recent ones are found in:

INDEX

Abraham, D. W., 240n.
Abrikosov, A. A., 11–12, 122, 131, 143–147, 390
Abrikosov vortex state, 143–147, 155–162, 348
Absorptivity, 40–42
Accelerative supercurrent, 18, 99, 289
Activation energy, 290, 294–295, 332, 353–356
Airy diffraction pattern, 216–218
Alben, R., 114
Amar, A., 273
Ambegaokar, V., 200, 210, 289–292, 305, 306
Ambegaokar-Baratoff formula for Josephson critical current, 200–201, 333
Ambegaokar-Halperin theory for overdamped junctions, 210–211, 253
Anderson, P. W., 52, 180, 384–387
Andreev, A. F., 36
Andreev reflection, 285, 374, 423–427
Anisotropic energy gap, 85
Anlage, S. M., 108
Annett, J. F., 376, 379
Anticommutation, 49
Aponte, J. M., 430–431
Appel, J., 314
Arp, V., 162
Arrays of Josephson junctions (see Josephson junction arrays)
Artemenko, S. N., 423
Aslamazov, V. G., 199, 312–313, 405, 418, 420
Attempt frequency, 180, 207, 291, 332
Attractive interaction, origin of, 46–48
Autler, S. H., 146
Averin, D. V., 269, 274, 284
Bardeen, J., 9, 13, 47, 69, 87, 125, 167, 388n., 389, 401
Bardeen-Stephen model, 167–170, 175
Barone, A., 218
BCS ground state, 48–58
with fixed particle number, 52, 68
variational calculation of, 53–58
BCS particle number eigenstates, 258–259
BCS theory, 8–9, 43–109
Bean model, 178–179
Beck, R. G., 338, 341
Bednorz, J. G., 1, 16, 316
Ben-Jacob, E., 210
Benz, S. P., 242n., 243
Biondi, M., 8
Blamire, M. G., 411–412
Blatter, G., 321, 355n.
Blonder, G. E., 424–426
Bogoliubov, 61
Bogoliubov, N. N., 60
Bogoliubov equations, 384–389, 424–426
Bohr-Sommerfeld quantum condition, 127–128
Boson glass model for superconductors with correlated disorder, 361–363
Boundary conditions, 117–118, 121, 136
Branch imbalance (see Charge-mode disequilibrium)
Brandt, E. H., 350n.
Brezin, E., 335
Brickman, N. F., 114
Briscoe, C. V., 315
BTK model, 424–426
Buhrman, R. A., 297
Bulaevskii, L. N., 330–331, 369–370
Burroughs, C. J., 243
Böttner, H., 157
Callarotti, R., 304–306
Campbell, A. M., 183
Canonical transformation method, 59–62
Carbotte, J. P., 48, 79
Caroli, C., 167, 389, 401
Casimir, H. B. G., 20, 107
Chaikin, P. M., 331
Chambers' nonlocal response, 6, 96
Chang, J. J., 409
Charalambous, M., 339n.
Charge imbalance
(see Charge-mode disequilibrium)
Charge-mode disequilibrium, 421–432
by Andreev reflection, 423–427
BTK model, 424
diffusion length, 422
electrochemical potential difference, 421–432
phase-slip centers, 417, 427–432
by quasi-particle injection, 421–422
subharmonic gap structure, 425–427
Charging energy effects
(see Double tunnel junction circuit)
Chemical potential, 69
(See also Electrochemical potentials)
Chi, C.C., 410–411
Clairborne, L. T., 84
Clarke, J., 227–229, 233, 234, 262, 263,
407–411, 421–422
Clem, J. R., 169, 365, 369–373
Clogston-Chandrasekhar paramagnetic limit, 394
Coffey-Clem model, 370–373
Coherence factors, 79–89
Coherence length:
BCS, 94
Ginzburg-Landau, 11, 118–120
relation to critical pair-breaking strength, 393
Pippard, 7, 11, 118–119
uncertainty principle argument, 7
Collective pinning, 348–361
activation energy, 353–356
correlation volume, 349–351
critical current density, 350–352
elasticity of flux line lattice, 348–351
exploration of peak effect, 352
theory of giant flux creep, 353–356
in two dimensions, 352–353
Condensation energy, 58
Conductivity:
complex, 37–40, 97–100
perfect, 2, 18
Conversion table for electromagnetic formulas, 434
Cooper, L. N., 9, 44
Cooper pairs, 9, 44–46, 197, 256–257, 286, 374
Corak, W. S., 8
Correlation functions:
current-current, 310
spatial, 299–301
Cotunneling processes, 284
Coulomb blockade, 249, 264–269, 278–286
conditions for, 264–265
Coulomb staircase, 264, 265, 278–283
Coupling losses between superconducting filaments, 191–194
Craven, R. A., 314
Critical current:
with collective pinning, 350–352
in critical state, 176–179
experimental, 126
in granular superconductors, 364, 369–370
in Josephson junction, 198–202
in Josephson junction arrays, 240–242
of wire or film, 21, 123–126
Critical field:
Clogston-Chandrasekhar paramagnetic limit, 394
of film: angular dependence, 139–141
of atomic thickness, 326
in parallel field, 21, 130–133
of intermediate state, 28–29
pair-breaking strength, relation to, 393–394
thermodynamic, 3, 21, 23, 65–66, 113, 161
of type II superconductor:
lower (H_{c1}), 11–12, 149, 154
surface (H_{c2}), 135
upper (H_{c2}), 12, 134–135
(See also Nucleation)
Critical region, 296, 341–342
Critical state, 176–179
Critical temperature T_c, determination of, 62–63
Critical velocity, 124
Current bias, 39
Cyrot, M., 399

Dahl, P. F., 195
Daunt, J. G., 8
de transformer, 174
Deaver, B. S., 128n.
de Gennes, P. G., 135, 138, 141–142, 167, 349,
385, 389–392, 395
Dekker, C., 360–361
Deltour, R., 174
Demagnetizing factor, 22, 24–25
Density of states:
BCS, 70–71
with magnetic perturbations, 394–399
Depairing energy, 391, 393
Depairing velocity, 125
Dephasing time, 391–394
Devlin, G. E., 107
Devoret, M., H., 263, 273n.
Diamagnetic current term, 90
Differential conductance vs. voltage for different barriers, 426
Dirty superconductors, Anderson theory of, 386–387
Dolan, G. J., 430
Domain structure, 27–32
Domain-wall energy, 25–26, 120–122
Doniach, S., 16, 306, 318–326, 342
Double tunnel junction circuit, 265–286
determination of I-V curve, 278–283
with normal island, 267–269
with superconducting island, 269–278
supercurrent in, 274–278
(See also Small Josephson junctions)
Drangeid, K. E., 157
Drew, H. D., 389
Drude model, 18, 37, 115
Dunkleberger, L. N., 208

Eck, R. E., 223
Eckern, U., 410
Eddy-current losses, 190, 192–194
Effective mass, 114
Eilenberger, G., 157, 162, 201, 305–306
Eiles, T. M., 277
Einspruch, N. G., 84
Ekin, J. W., 174
Elastic moduli of flux line lattice, 348–351
Electrochemical potentials of pairs and quasiparticles, 406–407, 421–432
Electrodynamics of superconductors, 17–42, 89–100
high frequency, 37–42, 86–89, 370–373
Electromagnetic absorption, 86–89
Electron creation operators, 69
Electron-phonon coupling strength, 78–79
Electron-phonon relaxation, 401–402, 407–408
Electron tunnelse or pump, 282
Electronic specific heat, 64–66
Eliasberg, G. M., 78, 399–400, 409
Energy gap, 8–9, 61–64
anisotropy in, 375–379
complex, 78
current dependence, 387–388
field dependence, 131–132, 394–399
temperature dependence, 62–64
Energy-mode disequilibrium, 408–421
dynamic effects, 412–421
Energy-mode disequilibrium (Cont.)
dynamic enhancement in metallic bridges, 417–421
enhancement by quasi-particle extraction, 410–412
microwave enhancement of superconductivity, 409–410
transient superconductivity above I_o, 414–417
Enhancement of superconductivity (see Energy-mode disequilibrium)
Ergodic motion of electrons, 390–391
Essmann, U., 30
Esteve, D., 273n.
Even-odd number parity effect in superconducting island, 269–274
Excess current, 424, 429
Excitation energies, 61
Excitation representation, 73
Excited states, 67–71, 268–273
Extreme anomalous limit, 98, 102–103, 440

Faber, T. E., 30
Fairbank, W. M., 128n.
Far-infrared absorption edge at energy gap, 8–9, 86–87
Feder, J., 135, 138
Feinberg, D., 330
Ferrell, R. A., 88
Fibich, M., 86
Fisher, D. S., 342n.
Fisher, M. P. A., 357, 361
Fiske, M. D., 223
Fluctuation effects, 15
in classic superconductors, 287–315
in flux creep, 179–185
in high-temperature superconductors, 331–344, 353–363
resistance in film, 294–295
resistance in wire, 288–293
superconductivity above T_c, 296–315
diamagnetism, 302–308
enhanced conductivity, 309–315
Maki-Thompson term, 313–315
spatial variation of, 298–302
time dependence, 308–309
zero dimensional, 296–298
Flux bundles, 174, 180–181, 355
Flux creep, 166, 179–187, 353–356
logarithmic time dependence of, 183–185, 353–356
Flux flow, 166–176, 221, 400–401
experimental verification of, 173–174
Flux flow (Cont.)
noise in, 174
Flux jumps, 188–190
Flux motion, 162–176
Flux quantum, 12
Fluxoid, definition of, 14, 127
Fluxoid quantization, 119, 127–128, 165
Fosheim, K., 84
Frank, D. J., 414–417
Fraunhofer diffraction pattern, 216–218
Fröhlich, H., 47
Fulton, T. A., 208, 264n.

Galaiko, V. P., 432n.
Gammel, P. L., 338–339, 358–360
Gap anisotropy, 375–379
charge relaxation by, 408
Gapless superconductivity, 131, 388–399
Garland, J. C., 239n.
Gauge choice in vortex, 150
Gauge-invariant phase difference, 202, 234
Gavaler, J. R., 316
Geshkenbein, V. B., 321, 377
Giaever, I., 71, 78, 124
Gibbs free energy, 23, 121–122, 124, 130, 149,
156, 159, 160
Ginzburg, V. L., 9, 122
Ginzburg-Landau coherence length, 11, 118–120,
393
Ginzburg-Landau equation, 117–118
boundary condition, 118, 136
linearized, 132–143, 393
time-dependent, 399–401
with time-dependent energy gap, 412–421
Ginzburg-Landau free energy, 111–117
of layered superconductors, 318
Ginzburg-Landau parameter values, 11, 116,
119–120
Ginzburg-Landau relaxation time, 308, 314, 401
Ginzburg-Landau theory, 9–11, 110–116
Gittleman, J. L., 176, 372
Glazman, L. I., 330, 343, 369
Glover, R. E., 8–9, 15, 87, 100, 312–314
Gollub, J. P., 303–307
Golub, A. A., 420
Gordon, J. P., 213
 Gor’kov, L. P., 10, 111, 131, 390, 399–400, 413
Gorter, C. J., 20, 35
Gorter-Casimir two-fluid model, 38
Grabert, H., 262
Gray, K. E., 404
Ground-state energy, 57–58
Haddon, R. C., 331
Hagen, S. J., 175
Hall effect, 175–176
Halperin, B. I., 210, 292
Halperin, W. P., 297
Hanna, A. E., 283
Harden, J. L., 162
Hardy, W. N., 381n.
Harris, R. E., 30, 204n.
Haviland, D. B., 250n.
Heavy fermion superconductors, 382–383
Hebel-Slichter peak, 84–86, 381–382
Hecking, F. W. J., 285
Helmholtz free energy, 3, 22, 65–66, 121, 124,
158–159, 326–327
Hempstead, C. F., 185
Hergenrother, J. M., 270, 272, 286
Hess, H. F., 389
High-frequency electrodynamics, 37–42, 86–89,
370–373
Coffey-Clem model, 370–373
High-temperature superconductors, 16, 316–382
anisotropic Ginzburg-Landau model for,
319–330
anisotropic mass and other parameters,
319–322, 325
anomalous properties of, 373–383
gap energy properties, 378–382
temperature dependence of penetration depth in,
380–381
copper oxide planes and chains in, 317
discovery of, 316–317
evidence for d-wave pairing in, 376–382
from flux quantization, 376–378
flux lattice melting field vs. temperature, 337,
341–342
flux lattice melting transition, 334–344
experimental evidence, 338–342
field vs. temperature, 337, 341–342
model estimate for temperature of, 335–338
phase diagrams, 344
relationship to H_{c2}, 337–338
2D vs. 3D, 342–344
granular, 363–370
brick-wall model for, 369–370
effective medium parameters for, 364–368
in relation to continuum models, 368–369
resistive transition in, 331–344
(See also Boson glass model; Layered superconductors; Type II superconductors; Vortex-glass model)
Hilbert, C., 234
Hole creation operators, 69
Hot spot in bridge, 431
Houghton, A., 338–339, 341, 344
Hsiang, T. Y., 422
Hu, C. R., 167, 400
Huebener, R. P., 36
Hunt, T. K., 126
Hysteresis in critical state, 179
Hysteresis losses, 190–191

Iansiti, M., 254, 258, 263
Inelastic scattering time, 402
Ingold, G. L., 253, 254
Instability, thermal, 186–187
Interface energy, 25–26, 120–122
Intermediate state, 22–37, 123
of flat slab, 25–31
laminar model of, 26–32
London’s model for wire above I_c, 32–37
magneto-optic technique for observation of, 36
of sphere, 31–32
Internal energy, 65–66
Isotope effect, 47, 58
Ivlev, B. L., 432n.
Iye, Y., 333

Jackel, L. D., 430
Jacobs, A. E., 389
Jaycox, J. M., 229
Jellium model, 47–48
Johnson, A. T., 250–251, 255
Josephson, B. D., 14, 69, 196
Josephson critical current:
Ambegaokar-Baratoff formula for, 200–201, 333
in metallic weak links 198–201
in S-N-S junctions, 201–202
Josephson effect, 196–286
cos γ term in, 204
coupling energy in, 198
in extended junctions, 215–224
frequency relation, 14, 166, 196
in inhomogeneous junctions, 217–218, 370
pendulum analogy, 219–220
in presence of magnetic flux, 213–224
quantum interference of currents, 213–218
time-dependent solutions, 221–224
Josephson junction arrays, 234–243
fluxons in, 236–241
pinning of, 240–242
frustration in, 235
 giant Shapiro steps in, 242–243
Kosterlitz-Thouless transition in, 237–239
in magnetic field, 239–242

Josephson junction arrays (Cont.)
as microwave source, 243
plaquettes in, 234–235
in rf fields, 242–243
screening length in, 236
in strongly commensurate fields, 241–242
vortices in, 236–241
Josephson junctions:
capacitive mass parameter, 205
critical current of, fluctuation effects on, 198, 207–209
damping parameter of, 204
fluxons in, 218–224
hysteretic, 206
I-V characteristics of, 205–211
plasma frequency of, 204, 223
quality factor of, 204
retrapping current of, 206, 209–210
ff-driven, 211–214
slow waves in, 222–224
small (see Double tunnel junction circuit; Small Josephson junctions)
solitons in, 218–224
pendulum analog for, 219–220
types of, 197
zero-field steps in, 224
Josephson penetration depth, 219
Josephson vortices, 216, 218, 219
pinning of, 218
Joyez, P., 278

Kadin, A. M., 430–431
Kamerlingh Onnes, H., 1, 2, 316
Kaplan, S. B., 407
Karrai, K., 114
Kautz, R. L., 253
Keller, J., 314
Kes, P. H., 346
Ketchen, M. B., 228
Kim, Y. B., 173, 180, 183, 185
Kinetic energy of current, 113, 123–125
Kirchner, H., 30
Klapwijk, T. M., 409, 425–427
Kleiner, W. H., 146
Koch, R. H., 227, 358–360
Kogan, V. G., 326–327, 330–331
Kommers, T., 409
Korenman, V., 314
Koshelev, A. E., 343
Kosterlitz-Thouless transition:
in arrays, 237–239
in films, 294–295
in layered superconductor, 344
Kramer, L., 432n.
Kramers-Kronig relations, 88, 247
Krusin-Elbaum, L., 347–348
Kulik, I. O., 201
Kämmel, R., 389
Kunchur, M. N., 170
Kurkijärvi, J., 305–306
Kuzmin, L. S., 250n.
Kwok, W. K., 340–341, 346

Lafarge, P., 273
LAMH theory, 292–293
Laminar model, 26–32
Landau, L. D., 9, 25, 30, 122
Landau branching model, 30
Landau levels, 134
Langer, J. S., 289–292
Langevin force, 309
Larkin, A. I., 16, 199, 312–313, 321, 398, 405, 418, 420
Larkin-Ovchinnikov theory (see Collective pinning)
Laurmann, E., 107
Lawrence-Donniach model of layered superconductors, 16, 308, 318–326, 342
crossover to two-dimensional behavior, 322–326, 330
Helmholtz free energy of, 326–327
irreversibility line in, 332–333
Lawrence-Donniach model of, 16, 308, 318–326, 342
lock-in transition in, 330–331
magnetization of, 326–331
scaling to isotropic model, 321–322
torque in magnetic field, 328–330
Ledvij, M., 330–331
Lee, P. A., 305–306
Leboczky, S. L. (A.), 315
Levine, J. L., 126, 397
Lewin, J. D., 187, 194
Lifetime:
of persistent currents, 2, 180, 185, 403
of quasi-particles, 86, 402
Likharev, K. K., 201, 274, 276
Lindemann criterion for melting, 336, 343
Lindhard, J., 115
Little, W. A., 127, 290
Little-Parks experiment, 128–130
Lobb, C. J., 238n., 240, 364n.
London, F., 14, 33, 127
London equations, 4–6, 18–21, 37
London gauge, 6n., 113, 130, 150n.
London penetration depth, calculation of, 90–93, 113, 437–441
Lorentz force, 13, 155, 163–167, 177, 354
Lu, J. G., 270, 272
Lukens, J. E., 292

Maassen van den Brink, A., 286
Macroscopic quantum tunneling:
of charge, 284
damping effect on, 262–263
of phase, 259–264
Magnetic perturbations, effect of, on density of states, 390–399
Magnetization, 20, 155–162, 302–308, 326–331
fluctuation-induced, 302–308
at intermediate flux density, 157–159
of layered superconductors, 326–331
at low flux density, 156–157
near H_{c2}, 160–161
Magnetization curve, area under, 20, 161
Magnetometers (see SQUID devices)
Magneto-optic technique for observation of intermediate state, 36
Magnets for time-varying fields, 187–195
Maki terms in fluctuation conductivity, 313–314
Maley, M. P., 354
Malozemoff, A. P., 333, 369
Mannhart, J., 369
Mansky, P. A., 331
Mapother, D. E., 66
Martinez, J. C., 329–331
Martinis, J. M., 253, 263, 277
Mason, W. P., 84
Masuda, Y., 86
Mathai, A., 378
Matricon, J., 167, 349, 389
Mattis, D. C., 87
Matveev, K. A., 278
McCumber, D. E., 204, 291, 292
McGrath, W. R., 247n.
McLachlan, D. S., 135, 138
McMillan, W. L., 58, 79
Meissner, W., 2
Meissner effect, 2–3, 5, 19–22, 303
in Josephson junctions, 219–220
transverse, in layered superconductors, 330–331
Mendelssohn, K., 8
Mercereau, J. E., 422
Metastable equilibrium, 403
Meyer, J. D., 427–428
Müller, P. B., 102
Millstein, J., 397–399
Minnhaagen, P., 237n.
Missing area in sum rule, 88, 99
Mitescu, C. D., 126
Mixed state, 12, 123, 143–147, 155–162
Model-hamiltonian, 59
Mooij, J. M., 238, 409
Morse, R. W., 83
Mühlischlegel, B., 65, 103
Mukherjee, B. K., 35
Müller, K. A., 1, 16, 316, 322
Multifilamentary superconductors, 187–195
Murakami, M., 347

\[\text{INDEX} \quad 451 \]

N2-particle BCS state, 52, 68, 258
Nazarov, Yu. V., 269, 285
Nelson, D. R., 347, 361
Newbower, R. S., 292–293
Newrock, R. S., 239n.
Noise:
\(\text{from flux motion, 174} \)
\(\text{in SQUID, 227–228, 232, 234} \)
Non-equilibrium superconductivity, 15, 403–432
(See also Charge-mode disequilibrium; Energy-mode disequilibrium)
Nonlocal electrodynamic response, 5, 91, 93–96, 115
\(\text{calculation of, 93–96} \)
Chambers’, 6, 96
Normal core of vortex, 167–168
Normal electrons, 37, 85
Nuclear relaxation, 84–86
Nucleation:
\(\text{in bulk samples at } H_c, 134–135 \)
\(\text{in films, 139–143} \)
\(\text{angular dependence, 139–141} \)
\(\text{at surfaces at } H_{c3}, 135–139 \)

Ochsenfeld, R., 2
Octavio, M., 418–421, 427
Ohmic conduction channel, 38
Omeľyanchuk, A. N., 201
Order parameter, 55, 112
(See also Energy gap)
Orlando, T. M., 238, 240n.
Orthodox theory of single-electron tunneling, 280–283
Oscillator strength sum rule, 38, 88, 99, 115
Otter, F. A., 176

Ovchinnikov, Yu. V., 16

Pair-breaking perturbations, 390–394
Pair creation operators, 69
Pairing hamiltonian, 53
Pairing potential, 385–388
Pals, J. A., 414
Pancake vortices, 327, 330, 334, 342
Paramagnetic current term, 90
Parks, R. D., 127, 314
Pastoriza, H., 335n.
Paterno, G., 218
Paton, B. R., 305, 314
Payne, M. G., 305–306
Peak effect, 352
Pearl, J., 105, 106
Penetration depth, 4–6, 18, 100–108, 437–441
in arrays, 236
dependence on magnetic field, 132
with diffuse scattering, 102, 105, 441
in extreme anomalous limit, 102, 440
by Fourier analysis, 101–102, 437–441
in high-temperature superconductors, 108
impurities, effect of, 96–97, 102
in local approximation, 102, 440
mean free path, effect of, 96–97, 102
measurement of, 106–108
parallel vs. perpendicular field, 105–106
in Pippard superconductors, 100–101
with specular scattering, 102, 105, 440–441
temperature dependence of, 103–104, 380–381
theory of, 100–106, 437–441
in thin films, 104–106
Perfect conductivity, 2, 18
Perfect diamagnetism, 2
Persistent current, 2, 128, 180, 185, 403
Phase of wavefunction, 13–14, 113, 149
Phase-number uncertainty relation, 52, 68, 256–259, 274–275
Phase slip, 206, 288–295, 299, 428–431
Phase-slip centers, 417, 427–432
difference in electrochemical potentials in, 428–430
Phillips, J. R., 236
Phillips, W. A., 84
Phonon-mediated attraction, 47–48
Phonon structure in tunneling, 78–79
Photon-assisted tunneling, 211–214
Pines, D., 47
Pinning effects, 166, 176, 345–363
Pinning force, 166
Pinning frequency, 176
Pinning mechanisms, 181, 345–348
Pippard, A. B., 6–8, 95, 107, 422
Pippard coherence length, 7, 11, 118–119
Pippard nonlocal electrodynamics, 6–8
Prange, R. E., 304–307
Prober, D. E., 308n.
Proximity effect, 197

Q* effects (see Charge-mode disequilibrium)
Quality factor, 41–42
Quasi-particle disequilibrium, 404–432
energy-mode vs. charge-mode, 405–407
(See also Charge-mode disequilibrium; Energy-
mode disequilibrium)
Quasi-particle energies, 61–71
shifted by current, 387–388
in vortex core, 388–389

RCSJ model:
definition of, 202–205
(See also Josephson junctions)
Reif, F., 397
Relaxation time:
electron-phonon, 401–402, 407–408
for energy and charge, 407–408, 431
Ginzburg-Landau, 308, 314, 401
Resistance of wire:
above Tc, type I, 32–37
type II, 171–173
above Tc, 312
below Tc, 288–293
Resistive voltage from flux motion, 163, 166–170
Resistively shunted junction model (see RCSJ
model)
Resnick, D. J., 239
Rice, T. M., 376–378
Richards, P. L., 247n.
Rinderer, L., 36
Rosenblum, B., 176, 372
Rotation-induced flux, 114
Roth, L. M., 146
Rowell, J. M., 79
Ruggiero, S. T., 323–324
Russer, P., 212
Rzchowski, M. S., 240, 241, 243n.

Safar, H., 339–341
Saint-James, D., 135, 138, 140–142
SBT model of phase-slip center, 428–431
Scalapino, D. J., 78, 409
Schawlow, A. L., 107
Schmid, A., 15, 167, 302–304, 399, 401, 405, 410,
412, 420
Schmid-Schön formalism, 405–408, 416, 431
Schmidt, H., 304
Schön, G., 15, 405, 420
Schrieffer, J. R., 9, 78
Schubnikov phase, 12
Screened Coulomb repulsion, 48
Second-order phase transition, 19, 112, 132
Semiconductor model, 73–78, 423–427
Shapiro steps, 211–212, 214, 242–243, 431
shunt, 242–243
Sharvin, Yu. V., 36
Shepherd, J. G., 422
Shoenberg, D., 107
Sigrist, M., 376–378
Silhacek’s rule, 21, 33
Sine-Gordon equation, 221–224
Single-electron tunneling, 264–286
Singlet state, 44, 374–375
S-I-S tunnel junctions as microwave detectors
and mixers, 243–247
Skalski, S., 395–398
Skocpol, W. J., 428–431
Slichter, C. P., 84, 381–382
Small Josephson junctions, 248–286
Coulomb charging energy in, 249, 264–267
damping by lead impedance, 249–256
phase diffusion branch of I-V curve, 252–256,
263–264
quantum effects of small capacitance, 256–264
retrapping current, effect of lead impedance
on, 250–252
(See also Double tunnel junction circuit)
Smith, P. F., 187, 191, 194
Soliton, 218–224
Solomon, P. R., 30, 176
Sommerhalder, R., 157
Sonier, J. E., 381
Specific heat, 64–66
Spectral energy gap, 68, 99
vs. gap parameter, 396
Spurway, A., 111, 194
SQUID devices, 224–234
choice of parameters for, 227
de, 224–229
flux-locked loop, 229
limits on sensitivity, 228
magnetometers, gradiometers, and
susceptometers, 213, 232–233
quantum limits, 228, 234
rf, 229–231
screening in, 225–227
voltmeters and amplifiers, 233–234
Stability criterion, 189
Steinig, F., 383
Stephenson, M. J., 13, 167, 401
Stewart, W. C., 204
Strassler, S., 398–399
Strnad, A. R., 185
Subharmonic energy gap structure, 425–427
Sum rule, oscillator strength, 38, 88, 99, 115
Superconducting electrons, density of, 4, 9, 37, 113–116
Superconducting layered compounds
(see Layered superconductors)
Superconducting quantum interference device
(see SQUID devices)
Superconducting slab, 20, 25, 178–179
Supercooling transition, 134–135, 138, 303
Supercurrent velocity, 113
Surface energy, 25–26, 121–122
Surface resistance, 40
Surface sheath superconductivity, 136–138

T* effects (see Energy-mode disequilibrium)
Takayama, H., 306
Tate, J., 114
Tewordt, L., 389
Thermal stability of magnet, 186–187
Thermodynamic critical field, 3, 21, 23, 65–66, 113, 161
Thermodynamic quantities, 64–66
Thomas, G. A., 314
Thompson, R. S., 167, 400
Thouless, D. J., 238
Thueneberg, E. V., 346
Tien-Gordon formula, 213, 245
Tilted-washboard potential (see RCSJ model)
application to time-varying field, 400–401
phonon-limited, 412–421
Time-reversed pairs, 384–387, 390
Tindall, D. A., 422
Tomash effect, 74
Tomonura, A., 174
Transition probabilities, 79–89
Transmissivity of thin films, 99
Traubl, H., 30
Tsuei, C. C., 369, 378
Tucker quantum theory of mixers and detectors, 245–247

Tunneling of electrons, 71–79
differential conductance, 76, 426
matrix element, 72
negative resistance in, 77
normal-normal, 75
normal-superconductor, 75–76
phonon structure in, 78–79
single-electron, 264–286
superconductor-superconductor, 77–78
(See also Josephson effect)
Tunneling transistor, superconducting, 277
Tuominen, M. T., 269, 271, 273, 327
Twist pitch, critical value of, 193–194
Twisted composite conductors, 190–195
Two-fluid model, 37–40, 83–86
temperature dependence, 20, 101, 103, 108, 381, 392
Type I superconductors, 18–43, 136, 161
Type II superconductors, 11–13, 122, 148–195
Campbell penetration depth in, 373
Coffey-Clem model of high-frequency losses in, 370–373
complex penetration depth in, 371–373
critical state in, 176–179
diffusion-London equation for, 371
flux creep in, 179–187
flux flow in, 166–176
magnetization curves of, 155–162
thermally activated flux flow in, 180–182, 332–334
in time-varying magnetic fields, 187–195
vortices in, 149–155
(See also High-temperature superconductors)

Ultrasound attenuation, 82–84
Uncertainty relations, phase-number, 52, 68, 256–259, 274–275
Unconventional pairing, 375–376
Usadel, K. D., 201

Valatin, J. G., 60
van der Zant, H. S., 240n
van Gurp, G. J., 174, 177
van Ooijen, D. J., 174, 177
van Son, P. C., 410
Vidal, F., 176
Villard, C., 330
Vinokur, V. M., 347, 361
Viscous drag coefficient, 166–169
Volkov, A. F., 423n
Voltage bias, 19
Vortex bundles, 174, 180–181, 355
Vortex lines, interaction between, 154–155
Vortex:
 core, 149, 152
 normal, 167–168
 quasi-particle states in, 388–389
 energy of, 153–154
 entropy transport by, 176
 in film in parallel field, 142–143
 high-κ approximation, 151–155
 isolated, 149–154
 London approximation, 152–155
 magnetic field in, 152
 moving, electric field in, 168–169
 pinning of (see Pinning effects)
 quasi-normal core of, 167–168, 389
Vortex-glass model, 356–360
 empirical scaling functions in, 358–360
 in two dimensions, 360–361

Waldram, J. R., 107
Walters, C. R., 187
Warburton, R. J., 292
Weak-coupling approximation, 45, 57

Weak link (see Josephson junctions)
Webb, W. W., 292
Wells, B. O., 379
Wellstood, F. C., 228
White, W. R., 324
Wilkins, J. W., 78, 305
Wilson, M. N., 187
Wollman, D. A., 378
Wolter, J., 414
Woolf, M. A., 397
Worthington, T. K., 363
Wyatt-Dayem effect, 409
Wyder, P., 398–399

Yamafuji, K., 140
Yanson, I. K., 218, 370
Yeshurun, Y., 333
Yu, M. L., 422

Zaitsev, A. V., 423
Zeldov, E., 335n.
Zorin, A. B., 276
INTRODUCTION TO SUPERCONDUCTIVITY
SECOND EDITION

MICHAEL TINKHAM

Well known for its accessibility to graduate students and experimental physicists, this volume emphasizes physical arguments and minimizes theoretical formalism. The second edition of this classic text features revisions by the author that improve its user-friendly qualities, and an introductory survey of latter-day developments in classic superconductivity enhances the volume's value as a reference for researchers.

Starting with a historical overview, the text proceeds with an introduction to the electrodynamics of superconductors and presents expositions of the Bardeen-Cooper-Schrieffer theory and the Ginzburg-Landau theory. Additional subjects include magnetic properties of classic type II superconductors; the Josephson effect (both in terms of basic phenomena and applications and of the phenomena unique to small junctions); fluctuation effects in classic superconductors; the high-temperature superconductors; special topics (such as the Bogoliubov method, magnetic perturbations and gapless superconductivity, and time-dependent Ginzburg-Landau theory); and nonequilibrium superconductivity.

See every Dover book in print at www.doverpublications.com