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1.1 INTRODUCTION

The statistical behaviour of photons at beam splitters elucidates some of the
most fundamental quantum phenomena, such as quantum superposition and
randomness. The use of beam splitters was crucial in the development of
such early interferometers as the Michelson-Morley interferometer, the Mach-
Zehnder interferometer and others for light. The most generally discussed
beam splitter is the so-called half-silvered mirror. It was apparently originally
considered to be a mirror in which the reflecting metallic layer is so thin that
only half of the incident light is reflected, the other half being transmitted,
splitting an incident beam into two equal parts. Today beam splitters are no
longer constructed in this way, so it might be more appropriate to call them
semi-reflecting beam splitters. Unless otherwise noted, we always consider in
this paper a beam splitter to be semi-reflecting. While from the point of view
of classical physics a beam splitter is a rather simple device and its physical
understanding is obvious, its operation becomes highly non-trivial when we
consider quantum behaviour. Therefore the questions we ask and discuss in
this paper are very simply as follows:

What happens to an individual particle incident on a semi-reflecting beam
splitter?

What will be the behaviour of two particle incidents simultaneously on a
beam splitter?

How can the behaviour of one- or two-particle systems in a series of beam
splitters like a Mach-Zehnder interferometer be understood?
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Rather unexpectedly it has turned out that, in particular, the behaviour
of two-particle systems at beam splitters has become the essential element
in a number of recent quantum optics experiments, including quantum dense
coding, entanglement swapping and quantum teleportation. This is due to the
fact that entangled states behave in a rather non-trivial way when incident
on beam splitters.

Finally we mention that most of the considerations we present here are not
limited to photons but are equally well applicable to massive particles. In
the field of matter-wave interferometry, beam splitters have so far been con-
structed successfully for electrons, neutrons and a number of different atoms
and molecules.

1.2 BASIC STATISTICS OF ONE AND TWO PHOTON
STATES AT BEAM SPLITTERS

1.2.1 One particle and a beam splitter
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c

Fig. 1.1 Action of a simple beam splitter

Consider a 50/50 beam splitter where one particle is incident via beam (a)
(Fig. 1.1). Obviously, this particle has a 50% chance of ending up in either in
output port (c) or in output port (d). Quantum mechanically we may write
the operation of the beam splitter as

|a〉 → 1√
2
(|c〉+ i|d〉) (1.1)

Here we have for simplicity assumed that the beam splitter is completely
symmetrical . This symmetry implies that a wave experiences a phase shift of
π/2 upon reflection relative to transmission, as signified by the phase factor
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i in Equation 1.1. If we envisage a continuous stream of incoming particles
equidistant in time incident from beam port (a) then the detectors positioned
in outgoing beams (c) and (d) will each register a random sequence of photons,
as each single photon has the same probability to be detected either in (c) or
in (d). This is signified in Fig. 1.2 and is a direct consequence of probabilistic
interpretation of the quantum state in Equation 1.1. In other words the
introduction of a beam splitter into a continuous beam in general introduces
new noise in the outgoing beams, should these beams be measured.

timea
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Fig. 1.2 A beam splitter introduces noise into its output ports due to the proba-
bilistic behaviour.

An alternative viewpoint within quantum electrodynamics is to assume
that the quantum state describing the input in beam (b) is a vacuum state
which is equally well divided by the beam splitter. The noise occurring in
beams (c) and (d) can then be seen as arising from this vacuum state which
necessarily has zero-point fluctuations.

1.2.2 One photon and two beam splitters

The most basic case of interferometry arises when a second beam splitter is
added (Fig. 1.3), where the beams (c) and (d) emerging from the first beam
splitter are then superposed again. One then also has the possibility to insert
a phase-shifter into both beams. Since an overall phase is unimportant it is
sufficient to consider the phase-shifter inserted in beam (d), as shown in the
figure. Then the quantum states evolve following the rules

|c〉 → 1√
2
(|e〉+ i|f〉) (1.2)

|d〉 → eiϕ|d〉 → eiϕ√
2
(i|e〉+ |f〉) (1.3)
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Fig. 1.3 Two beam splitters in series form a Mach-Zehnder interferometer which
has an additional free phase ϕ.

Combining this with the rule from Equation 1.1 we find that the final
outgoing state becomes

|a〉 → ieiϕ/2
[
− sin

ϕ

2
|e〉+ cos

ϕ

2
|f〉
]

(1.4)

This final result has a number of interesting implications. Firstly we noticed
that the probability to find the photon in beams (e) or (f) is

pe = sin2 ϕ

2
=

1
2
(1− cosϕ) (1.5)

pf = cos2
ϕ

2
=

1
2
(1 + cosϕ) (1.6)

This simply implies that for a phase-shift ϕ = nπ the photon will definitely
end up in one of the two outputs while the output is maximally uncertain
for phase shifts exactly in between. Again for an incoming stream of photons
we therefore conclude that the noise in the output beams (e) and (f) can be
adjusted by adjusting the phase-shift ϕ to the appropriate values.

Another interesting consequence is the observation that the Mach-Zehnder
interferometer shown in Fig. 1.3 can be viewed as a realisation of a beam
splitter where the reflectivity is simply adjusted by proper choice of the phase
ϕ.
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1.2.3 Two particles and a beam splitter

Fig. 1.4 Two particles incident on to the same beam splitter input.

Evidently when we consider two particles and a beam splitter we have
various possibilities. The first and most simple one is to consider the case
where the two particles are incident from the same side, say via beam (a)
(Fig. 1.4). When we analyse this situation quantum mechanically we have
to be cautious to define each photon in its own Hilbert space. Therefore the
incident state is

|ψin〉 = |a〉1|a〉2, (1.7)

where |a〉1 means that photon 1 is incident in beam (a). We then have to
apply the beam splitter rule of Equation 1.1 twice and finally obtain

|a〉1|a〉2 → 1
2
(|c〉1 + i|d〉1) (i|c〉2 + i|d〉2) (1.8)

1
2
(|c〉1|c〉2 + i|c〉1|d〉2 + i|d〉1|c〉2 − |d〉1|d〉2) (1.9)

This result simply reflects the fact that each of the two particles behave
independently just as classical particles would do. We therefore end up with
the following probabilities:

p(both particles in c) = 25%
p(both particles in d) = 25% (1.10)

p(one particle each in c and d) = 50%

Again, like in the single particle case, the beam splitter adds new noise to
the system.
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Fig. 1.5 Two particles can enter the beam splitter in a superposition of two config-
urations.

So far we have considered the case that both particles are incident from the
same input port. While classically this implies that they have to be incident
either from input port (a) or from input port (b) quantum mechanically this
need not be the case. Indeed we can consider the two photons to be incident
in a superposition of both being in (a) or both being in (b). If for simplicity
we assume that the amplitudes for the two cases are equal then a quantum
state describing such a superposition in general is

1√
2

(
|a〉1|a〉2 + ei2ϕ|b〉1|b〉2

)
(1.11)

where we have introduced the phase 2ϕ between the two incident beams. The
reason we chose 2ϕ instead of ϕ is a very simple one. Suppose we had from
some upstream optical devices an incident beam without the phase difference
shown in Equation 1.11. Inserting then a phase shifter into beam (b) imposes
a phase shift of ϕ both on the state of particle 1 and on the state of particle
2, resulting in the phase shift 2ϕ as shown in Equation 1.11.

Evaluating now the state emerging from Fig. 1.5 we need the additional
beam splitter rule

|b〉 → 1√
2
(i|c〉+ |d〉) (1.12)

Inserting Equation 1.1 and 1.12 into Equation 1.11 and keeping track of
the separate subscripts of the two photons the finally emerging state becomes

ieiϕ [cosϕ (|d〉1|d〉2 − |c〉1|c〉2) + sinϕ (|c〉1|d〉2 + |d〉1|c〉2)] (1.13)

The implications of this state are quite interesting. It turns out that for
specific phases ϕ = nπ the two photons again emerge in an equal superpo-
sition of being both in beam (c) and being both in beam (d), but now with
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the definite phase factor of -1 between the two. This now simply implies that
detectors in beams (c) and (d) will register the same quantum noise as detec-
tors in beam (a) and (b) would have. Yet alternatively one can set the phase
to odd multiples of π/2, i.e. ϕ = (2n+1)π/2. In that case the emerging state
says that we either find photon 1 in beam (c) and photon 2 in beam (d) or
photon 1 in beam (d) and photon 2 in beam (c). In other words we will def-
initely find one photon in either outgoing beam and noise will be suppressed
in the output ports.

Fig. 1.6 One particle in each input mode.

What would then happen if we consider the final possibility, namely one
particle incident from input port (a) and on from (b) in Fig. 1.6. Now a com-
pletely new consideration has to be made, namely relating to the statistics
obeyed by the particles. If, as we assume, the two particles are indistinguish-
able, we do not know whether particle 1 is incident from beam (a) and particle
2 is incident from beam (b) or vice versa. Therefore the quantum state has
to be a superposition of |a〉1|b〉2 and |a〉1|b〉2. In this superposition as in any
superposition we have to discuss which phase factor to choose between the
two terms. In this specific case the phase factor has to follow from the sym-
metry properties of the particles themselves, that is, do we assume them to
be fermions or bosons? In the case of bosons the state has to be symmetrical
upon each interchange of the two particles. This means that it becomes

|ψ〉boson =
1√
2
(|a〉1|b〉2 + |a〉1|b〉2) (1.14)

In the case of fermions it has to be anti-symmetrical

|ψ〉fermion =
1√
2
(|a〉1|b〉2 − |a〉1|b〉2) (1.15)

As we will immediately see the two states imply completely different sta-
tistical behaviour for the two particles after the beam splitter. Indeed, in the
case of fermions the outgoing state becomes
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|ψ〉fermion =
1√
2
(|c〉1|d〉2 − |d〉1|c〉2) (1.16)

while for incident bosons the outgoing state is

|ψ〉boson =
i√
2
(|c〉1|c〉2 + |d〉1|d〉2) (1.17)

These relations simply imply that for the case of two fermions incident one
each from each side of the beam splitter we will again find one particle in
each of the outgoing beams. Thus if the incoming beams have no noise, the
outgoing beams will also be noise-free. In contrast for bosons we will find
both particles either in beam (c) or in beam (d), as above, even if the incident
beam is noise-free, we will have the usual partition noise after transmission
through the beam splitter.

= +–

Fig. 1.7 Two particles incident on a beam splitter via separate inputs can end up in
different outputs either if both are reflected or both are transmitted. The two terms
on the right hand side of this “equation” can interfere constructively or destructively
depending on their relative phase with which they are superposed. The phase depends
on the symmetry of the state and therefore in turn on the statistics of the actual
particles.

It is important to notice that the behaviour just discussed is due to quan-
tum interference. The fact that in Equation 1.16 no terms appear where both
particles are found in either beam and likewise the fact that in Equation 1.17
no terms appear where one particle is found in each outgoing beam is simply
due to destructive or constructive interference of the respective terms after
insertion of Equations 1.1 and 1.12 into Equations 1.14 and 1.15 respectively.
This interference is illustrated by Fig. 1.7 We should also notice that more
generally the anti-symmetrical state of Equation 1.15 is an eigenstate of any
beam splitter operation. This can be viewed as another manifestation of the
Pauli exclusion principle, since otherwise the beam splitter would be able to
operate in such a way as to, at least sometimes, put two fermions into the
same outgoing state, a clear impossibility.

imgeq.eps
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Fig. 1.8 Coincidence rate at detectors in the two output beams of a beam splitter
of Fig. 1.7 as a function of the path length difference of the incident beams from the
source. A decrease in the coincidence rate at zero path difference is observed for a two
particle state with bosonic symmetry at the input.

The observation of the interference phenomena described above is usually
done using an interferometer invented in Ref. [8]. In this interferometer (see
also Fig. 1.10) simultaneous pairs of photons are produced by parametric
down-conversion. The two photons are then directed to the two input ports
of the beam splitter. Coincidence counts after the beam splitter indicate that
the two photons left the beam splitter via different output modes. The path
difference for the two photons from their production to the beam splitter may
be scanned. If the two photons are indistinguishable in all other respects for
path differences smaller than their coherence length an increase or decrease in
the coincidence rate will be observed depending on whether we look at states
with fermionic or bosonic symmetry respectively.

The different statistical behaviour of symmetrical and anti-symmetrical
states of beam splitters will be of utmost importance in the various appli-
cations of beam splitters in identifying entangled quantum states, as we will
discuss in the next chapters.

1.2.4 Polarization and beam splitters

So far we have only discussed the spatial part of the particle’s wavefunctions
and the results above are true for all kinds of particles. In the case when the

homdip.eps


x

particles in question also have spin, there is an additional degree of freedom.
This additional degree of freedom is used in most of the applications that are
discussed in the following sections. Here we will only concentrate on the case
of photons where we have to include the two-state space of polarization in
addition to the spatial degree of freedom.

The spatial transformations (Eqs. 1.1 and 1.12) performed by a beam split-
ter with reflection and transmission amplitudes t and r can be summarised in
a 2× 2 matrix

(
t ir
ir t

)
(1.18)

if we describe the input and output states as vectors in the two input modes
((a) and (b)) and the two output modes ((c) and (d)) respectively. This
matrix becomes

1√
2

(
1 i
i 1

)
(1.19)

for the symmetric case.1 If we now add the polarisation degree of freedom
we have to use four modes. A vector in this mode space shall consist of the
components




aH

bH
aV

bV


 , (1.20)

where (a) and (b) again denote the two possible spatial modes and H and
V denote the two possible values of the polarization. A general polarisation
dependent beam splitter is now a device with the following matrix:




tH irH 0 0
irH tH 0 0
0 0 tV irV
0 0 irV tV


 (1.21)

Now there are two limiting cases: 1. the non-polarising beam splitter with
tH = tV, rH = rV and 2. the (totally) polarizing beam splitter (Fig. 1.9)with
tH = 1 and rV = 1. Thus the matrix of the latter reads




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (1.22)

1In quantum information the beam splitter transformation is called Hadamard transforma-
tion and is one of the basic building blocks in many quantum computational circuits and
algorithms.
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Fig. 1.9 (top) The operation of a totally polarising beam splitter is shown in the
upper part. Usually light having polarisation parallel (here “V”) to the splitting surface
is reflected and orthogonally polarised (here “H”) light is transmitted. (bottom) The
polarisation dependent beam splitter is equivalent to a unitary eight-port device “U”.

It is interesting that this matrix is exactly identical to the matrix of the
CNOT-gate which is a universal gate in quantum computation. The two
qubits of the CNOT-gate are here represented by the spatial and polariza-
tion degrees of freedom respectively. This fact has led to the idea that some
quantum computing algorithms could be realized using photons and only lin-
ear optics. The problem here is that this CNOT-gate cannot operate on two
particles but only on the different degrees of freedom of one particle. Thus no
spatially separable entangled states can be produced with this simple tech-
nique.

The polarizing beam splitter is used in the production of GHZ-states as
shown in section 1.4.4 and of course also for polarization analysis in various
other experiments.

1.3 ENTANGLED PHOTON STATES AT BEAM SPLITTERS

The polarization degree of freedom opens new interesting possibilities for pho-
tonic experiments using beam splitters. As photons are bosonic we know that
their total quantum state should always be symmetric under permutation of
the particles. Now, as we have the spatial and polarisation components of the
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state there are two ways by which it is possible to achieve the required sym-
metry. Either both parts are symmetric under permutation or both parts are
antisymmetric. If we only view the spatial part the photons behave as if they
had an antisymmetric wavefunction. In Ref. [10] and more detailed in Ref. [12]
it was shown that indeed both the “bosonic” interference (Eq. 1.17) and the
“fermionic” type (Eq. 1.16) can be realized by engineering the polarisation
state.

If we combine two two-state systems we enter a 4-dimensional Hilbert space.
One possible basis for this space is the so-called Bell-basis which consists of
the following four states:

∣∣Ψ+
〉

=
1√
2
(|H〉1|V 〉2 + |V 〉1|H〉2)

∣∣Ψ−〉 =
1√
2
(|H〉1|V 〉2 − |V 〉1|H〉2) (1.23)

∣∣Φ+
〉

=
1√
2
(|H〉1|H〉2 + |V 〉1|V 〉2)

∣∣Φ−〉 =
1√
2
(|H〉1|H〉2 − |V 〉1|V 〉2)

In contrast to the canonical basis which consists of product states only this
basis has just maximally entangled states. Of these |Ψ−〉 is the only one,
which is antisymmetric under particle exchange, all others are symmetric. If
two photons in an experiment are indistinguishable otherwise we know that
we have to associate with them a totally symmetric wavefunction. For two
photons, one in each of two spatial modes (a) and (b), and polarization modes
H and V this yields

∣∣Ψ+
〉

=
1√
2
(|H〉1|V 〉2 + |V 〉1|H〉2)(|a〉1|b〉2 + |b〉1|a〉2)

∣∣Ψ−〉 =
1√
2
(|H〉1|V 〉2 − |V 〉1|H〉2)(|a〉1|b〉2 − |b〉1|a〉2) (1.24)

∣∣Φ+
〉

=
1√
2
(|H〉1|H〉2 + |V 〉1|V 〉2)(|a〉1|b〉2 + |b〉1|a〉2)

∣∣Φ−〉 =
1√
2
(|H〉1|H〉2 − |V 〉1|V 〉2)(|a〉1|b〉2 + |b〉1|a〉2).

We immediately see that we can discriminate the |Ψ−〉 polarisation state
from the others by the symmetry of the accompanying spatial quantum state.
Combining this with results of the previous sections we find that if we detect
two photons in coincidence in distinct outputs of a symmetric beam splitter we
know that the spatial input state must have been antisymmetric and therefore
also the polarisation state must have been antisymmetric (|Ψ−〉). In the case
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Fig. 1.10 Schematic of the experimental setup to demonstrate photon statistics at
beam splitters.

when there is no coincidence – the two photons have left the beam splitter via
different output ports – we know that they are in one of the three symmetric
Bell-states.

To confirm this phenomenon an experiment was conducted by M. Ober-
parleiter [12] using the apparatus shown in Fig. 1.10. In this experiment all
four Bell-states were produced in a non-colinear type-II spontaneous paramet-
ric down-conversion arrangement together with two birefringent waveplates.
Depending on the setting of the waveplates any of the four states could be
produced. Fig. 1.11 shows the corresponding interferograms for all four cases.

With this setup one can only discriminate between two cases. In sec-
tion 1.4.1 we will see that by adding two polarising beam splitters we can
discriminate between three different cases. Unfortunately with only linear
optical elements it is not possible to do a complete Bell-state analysis be-
cause this corresponds to a disentangling operation which requires interaction
between the constituents. However, many of the applications which rely on
Bell-state analysis can still be demonstrated with incomplete Bell-state anal-
ysis albeit with a lower efficiency.

The generalization of a beam splitter to devices with more inputs and out-
puts (multiports) yields a wealth of interesting possibilities [9, 11].2 The appli-
cation of these devices makes it possible to probe higher-dimensional Hilbert
spaces. This includes fundamental research testing quantum nonlocality [15]
and also demonstrations of quantum information processing circuits [5].

2Any higher dimensional device (any complicated unitary operator) can be constructed
from only a few basic elements of which the most important one is the beam splitter[16].
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Fig. 1.11 Two-photon interference for the four possible Bell-states of a photon pair
in the two inputs of a beam splitter. The coincidence rate as detected in the two
outputs is shown as a function of the path difference for the two photons to the beam
splitter.

1.4 PHOTON-STATISTICS APPLICATIONS

1.4.1 Dense coding

The transition from the theoretical concept of entangled states and statistics
to the almost practical issues of quantum information processing occurs when
we replace our labels ‘H’ and ‘V’ by the binary digits ‘0’ and ‘1’. This is
viewing the two-state space of a polarized photon as representing information.
A two level system carries 1 qubit of quantum information. Necessarily a two
photon system can carry 2 qubits. In a product state description the basis
states could be enumerated as

|0〉 |0〉
|0〉 |1〉 (1.25)
|1〉 |0〉

dipsnbump.eps
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|1〉 |1〉 .

The special choice of a basis cannot change the possible information con-
tent of a physical system. Therefore it is clear that using only entangled basis
states we can still encode two bits of information, that is we have four dif-
ferent possibilities, but now this encoding is done in such a way that none of
the particles carries any well-defined information on its own. All information
is encoded into relational properties of the two qubits. It thus follows imme-
diately that in order to read out the information one has to have access to
both qubits. The corresponding measurement is the Bell-state measurement
that has been described in the previous section. This is to be compared with
the classical case where access to one qubit is simply enough to determine the
answer to one yes/no question. In contrast, in the case of the maximally en-
tangled basis access to an individual qubit does not provide any information.

Whenever two parties A (Alice) and B (Bob) wish to communicate with
each other they have to agree first on a coding procedure, that is they have
to agree which symbol means what. In classical coding the situation is very
simple. Restricting ourselves to binary information, that is to bits, we need
some information carrier which has two states. In quantum physics again
we can have information encoding in a novel way using entangled states and
thus encode information into joint properties of elementary systems. Then
the elementary systems themselves do not carry any information. A first
elementary case where this is clearly demonstrated is quantum dense coding.
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Fig. 1.12 Experimental apparatus to demonstrate the dense coding application of
entangled photon statistics at beam splitters.
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The maximally entangled Bell basis of equation 1.24 has a very important
and interesting property which was exploited by Bennett and Wiesner [1] in
their proposal for quantum dense coding. This is the property that in order
to switch from any one of the four Bell states to all other four it is sufficient
to manipulate one of the two qubits only while in the classical case one has to
manipulate both. Thus, the sender Bob (see Fig. 1.12) can actually encode
two bits of information into the whole entangled system by just manipulating
one of the two qubits. Let us, for example, assume that we start from the
state |Ψ+〉 then we can obtain |Ψ−〉 by just introducing a phase shift of π
onto, say, the second qubit, |Φ+〉 is obtained by flipping the second qubit and
the last state |Φ−〉 is obtained by a combination of both.

Fig. 1.13 A sample transmission of three symbols using the dense coding technique.

In order to read out this information the receiver, Alice, needs to be able to
identify the four Bell states, that is she needs a Bell-state analyzer. In order
to identify all four Bell states, one needs some non-linear interaction between
the two qubits as already stated above. The experimental realisation [10] is
shown in Fig. 1.12. The setup is a modification of the one shown in Fig. 1.10
by adding one polarising beam splitter to each output of the analysing beam
splitter and ideally also another beam splitter into each output port of the
two polarising beam splitters (not shown).

Whenever there is a |Ψ+〉 state (cf. Eq. 1.24) incident onto the analyser
the two photons will leave the first beam splitter through the same output
port as discussed in the previous section. As they have different polarisation
they will split up at one of the polarising beam splitters and can be detected
in coincidence afterwards giving a clear signal for the measurement of a |Ψ+〉
state.

dcdata.eps
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In turn, for a |Ψ−〉 state we expect a different behaviour, namely that the
two photons will separate into different outputs of the first splitter and there-
fore give a coincidence signal between two detectors on either side downstream
of the first beam splitter.

The third case allows us to also identify the presence of |Φ±〉 albeit with
lower probability than for the other two states. |Φ±〉 will both always contain
two photons of identical polarisation. The two photons may now split up at an
additional beam splitter inserted after the polarising ones which allows to find
a positive signal for the |Φ±〉 states in half of the cases. If efficient detectors
would exist that could perfectly discriminate between one and two photons
this could be an even better alternative way. To sum up, we find that with only
linear elements one can identify three of the four Bell states. With the setup
shown in Fig. 1.12 it was thus possible to encode and identify log2 3 = 1, 58
bits of information per photon manipulated. A sample transmission is shown
in Fig. 1.13.

1.4.2 Teleportation

A most remarkable application of the concept of beam splitter statistics and
entanglement is quantum teleportation. Consider first the problem. Suppose
that Alice has an object which Bob, who could be anywhere, might need
at a certain time. In classical physics what she can do is perform many
precise measurements on the object and send the information to Bob who
then can reconstitute the object within classical physics. The accuracy of
this is only limited by the precision with which Alice can measure and by the
technical abilities of Bob. Yet, we know that in the end any measurement will
run into the limitations imposed by quantum mechanics. It is evident that
no measurement whatsoever performed by Alice can reveal the full quantum
state of the object. We therefore ask which strategy Alice can pursue in order
for Bob to obtain the object in its full quantum state when he needs if we
imagine a situation where it is not possible to transfer the object – and the
mass or energy associated with it – itself, which might even be unsuitable for
transportation in the first place.

A strategy proposed by Bennet et al. [2] uses exactly the information-
theoretic features of entanglement mentioned above. Let us consider for sim-
plicity that the object to be teleported is simply a two-state system, a qubit.
Then Alice and Bob share from the beginning an ancillary entangled pair
which for convenience we again consider to be in the state |Ψ−〉. Subse-
quently Alice performs a Bell-state measurement jointly on her qubit and on
one of the two ancillaries. In the photonic case this can again be implemented
by Bell-state analysis employing the beam splitter statistics of two photons.
Alice will obtain each one of the four possible answers with equal probability,
that is her original qubit and her qubit from the ancillary pair will be pro-
jected onto any one of the four Bell-states each with probability 25%. We note
again that this measurement does not reveal any information, neither about
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Fig. 1.14 Experimental scheme for the teleportation of an arbitrary quantum state
of a photon. All the photons are produced by parametric down-conversion of a pulsed
laser.

the properties of the original qubit nor about the properties of the ancillary
pair. So Alice obtains one of four possible results, “Ψ+”, “Ψ−”, “Φ+”, or
“Φ−”. She then broadcasts this information, that is two classical bits, such
that Bob can receive them. By now Bob is in possession of a specific state
as a consequence of Alice’s Bell-state measurement. Performing one of four
unitary transformations depending on Alice’s specific result Bob can trans-
form his particle into the original qubit. We also note that the original qubit
disappears during the Bell-state measurement, it loses its identity, and thus
Bob’s qubit is not a copy but really a teleported reappearance of the original.

The major problem in the experimental verification of quantum teleporta-
tion [4] was the Bell-state measurement of two independently created quantum
systems. This is even more difficult than the interferometers we have looked
at in the previous sections. Here, one has to perform a second order inter-
ference measurement on particles originating from independent sources. This
means that these two qubits have to be measured such that their identity
is lost, that it is not possible to infer which detection event refers to which
source. One condition that emerges from this criterion is that the coincidence
window should be significantly smaller than the coherence time of the photons
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Fig. 1.15 Sample data of the experimental verification of the teleportation proce-
dure. The teleportation fidelity is plotted as a function of the path length difference
between the paths of the photon which is to be teleported and the one from the en-
tangled pair respectively. Random photons would yield a fidelity of 0.5. The results
clearly surpass the limit of 2/3 for a teleportation procedure relying on classical com-
munication only.

(“ultracoincident”). It turns out that in the experiment it is rather tricky to
achieve this situation. As can be seen in Ref. [19], it involves an elaborate ap-
plication of a quantum erasure technique, using mode-locked pulsed lasers to
make the coincidence window independent of any electronic limitations while
still maintaining reasonable count rates.

1.4.3 Entanglement swapping

Entanglement used to be considered as a consequence of the fact that the
entangled particles interacted in their past or that they came from a common
source. That this is too restricted a view is witnessed by the concept of
entanglement swapping [18]. In the simplest implementation of entanglement
swapping we take two entangled pairs (Fig. 1.16) and subject two particles, one
from each source, to a Bell-state measurement. Then the other two particles
which have never interacted in the past and also did not come from a common
source are projected onto an entangled state. Remembering that we can
perform projective Bell-state measurements using a beam splitter and single-
photon detectors we find that we can construct entanglement using only beam
splitters.

tpdata.eps


xx

Let us, for simplicity of discussion, just consider the case where we have
sources that produce our two qubits in the anti-symmetric state |Ψ−〉. This
state has the unique feature that it is anti-symmetric in any basis. Thus,
in terms of its information content, the statement is that we know the two
qubits are different whatever basis we choose 3. We thus know simply by the
choice of preparation that in each of the two entangled pairs to be used in
entanglement swapping the two qubits are completely different.

We now have to discuss the information content of Bell-state analysis. At
first we note that, whichever states we would produce at the sources, a fair
Bell-state analyser will return any of the four possible answers with equal
probability of 25%. That is, the action of the Bell-state analyser is such that
it projects the two photons onto an entangled state and, since in our case
the two qubits are themselves members of maximally entangled pairs and
therefore carry no information, this has to happen with equal probability for
all four Bell states measured. In fact, the Bell-state measurement does not
reveal any information about any of the qubits emitted by one of the two
sources nor any joint information about each source. Yet, what we gain is
joint (or relative) information about the two sources.

EPR-source IIEPR-source I

1 2 3 4

Bell State
Measurement

Fig. 1.16 Block diagram of the entanglement swapping procedure. Two particles
from independent EPR sources become entangled by a projective Bell-state measure-
ment.

Suppose, specifically, that in a certain experimental run we obtain the
result |Ψ−〉 for the Bell-state measurement. We then know that qubits 2 and

3We remark that for the three symmetric states we can make analogous statements but
the situation is slightly more complicated. It turns out in the end that, since the Hilbert-
space of the four Bell-states is four-dimensional, we can encode two independent bits of
information into these four states. Therefore the four states can be characterised by yes/no
answers to two distinct questions. These two questions are questions about the identity of
the two qubits in two different bases conjugate to each other.
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3 have been projected by the measurement onto a state which is characterized
by the fact that these two qubits are different in whatever basis. Interestingly,
and again most remarkably, this statement is even true as none of the two
qubits themselves are yet well-defined in any basis and have no properties by
themselves.

Now we are in a position to complete our chain of reasoning. By the
properties of source I we know that qubit 1 and qubit 2 are different. By the
result of the specific Bell-state measurement we know that qubit 2 and 3 are
different and, finally, from the property of source II we know that qubit 3 and
4 are different. Therefore, since our qubits are defined in a Hilbert-space of
dimension 2 only, we conclude that qubit 1 and 4 also have to be different in
any basis. Therefore they emerge in the anti-symmetric state |Ψ−〉. Analogous
reasoning can be built up for the other three possible Bell-state measurement
results.
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Fig. 1.17 Interference data from an entanglement swapping experiment.
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The experimental data taken from Ref. [14] show an interference visibility
of 65%, which is only slightly less than the value of 71% required to violate
a Bell-type inequality. While the experimental data already clearly show
that the correlations produced are stronger than any classical one could ever
be, a violation of Bell’s inequality would be a definitive indication of the
success of the entanglement swapping method. The experimental limitation
is mostly due to the difficulty of realizing perfect erasure of the information
about the origin of the two independent particles subjected to the Bell-state
analysis. Current experiments indicate that it will soon be possible to perform
entanglement swapping with the desired visibility level.

1.4.4 GHZ-preparation

An intriguing application of both ordinary and polarising beam splitters is the
creation of Greenberger-Horne-Zeilinger (GHZ) [7, 6] entangled states of three
or more particles. GHZ states enable us to show a contradiction between the
possible predictions of local realistic models and quantum physical predictions
without having to resort to an assessment of imperfect statistical correlations
as in Bell’s inequality.

Currently, parametric down-conversion is the standard source for the pro-
duction of two-particle entangled states. However, for entangled states of
more than two particles there is no convenient source available. As already
foreseen in Ref. [18] and presented in Ref. [17] it is however possible to employ
two or more photon pairs as a resource in the creation of higher-dimensional
entangled states. The combination of the pairs is done with various beam
splitter assemblies.

In the work of Ref. [3] the setup shown in Fig. 1.18 was used to cre-
ate a three-particle entangled state conditioned on the detection of a fourth
“trigger” photon. A type-II down-conversion crystal pumped by a femtosec-
ond pulsed laser delivers polarisation entangled photon pairs in the state
|Ψ−〉 = 1/

√
2(|H〉1|V 〉2 + |V 〉1|H〉2). The number of pairs emitted from a

single pump pulse is not fixed. As we are considering a spontaneous process
we expect thermal emission statistics and sometimes there will be two pairs,
whereas the emission of more than two is much more unlikely. We now im-
pose the restriction that we only look at events where all four detectors (T,
D1, D2, and D3) register a photon. Thus we need not go through the tedious
calculation of the full state but it is sufficient to only account for the few cases
that lead to such a four-fold coincidence event.

We immediately see that the trigger detector T will only register horizon-
tally polarised photons4 and four-fold events only happen if it registers exactly
one such particle. Therefore there must be one vertical and one horizontal

4Remember that a totally polarising beam splitter will transmit horizontally polarised pho-
tons and reflect vertically polarised ones (polarised parallel to the beam splitting plane).
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Fig. 1.18 Schematic of the experimental setup to produce three-photon GHZ-states
from two entangled pairs, consisting of a parametric down-conversion source (β-
BariumBorate (BBO) pumped by a femtosecond pulsed UV laser), a beam splitter
“BS”, two polarising beam splitters “Pol BS”, and a half-wave plate with its optic axis
at 22.5◦ to vertical. The half-wave plate changes V photons into 1/

√
2(|V 〉+ |H〉).

particle in the right arm. In that case these two photons must have split up
at the beam splitter such that one went to D3 and one to the final polarising
beam splitter. Remembering that in the left arm we have a V photon, which is
transformed to 1/

√
2(|V 〉+ |H〉) by the half-wave plate we find that there are

now two ways in which a four-fold event can occur: either two vertically po-
larised photons are detected in D1 and D2 or two horizontally polarised ones.
In either case we will register the opposite polarisation in D3. If the two
possibilities are indistinguishable by other means we will achieve a coherent

ghzsetup.eps


xxiv

superposition yielding the state

1√
2
|H〉T(|H〉1|H〉2|V 〉3 + |V 〉1|V 〉2|H〉3) (1.26)

where the actual phase between the two components can be found in a more
formal derivation.

In Fig. 1.19 (left pane) one can see the interferogram for two specific com-
ponents of the above mentioned state (Eq. 1.26) when expressed in a basis
that chooses circular polarisation measurement for the first two detectors and
linear 45◦ for the third one. The observed contrast was higher than 84%.
Fifteen more curves were measured to check a version of the GHZ-argument.
For this purpose one needs to construct a simple inequality relating all sixteen
observations which must be obeyed by any local realistic model. It could be
shown [13] that, closing the detection efficiency loophole, indeed local realism
is in conflict with the experiment.
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Fig. 1.19 Measurement data from the GHZ-experiment. As the length difference of
the left and right paths in Fig. 1.18 is varied around zero one observes the interferogram
for a specific basis of polarisation analysis. In the circular, circular, linear 45◦ basis
we observe interference (left), while there is no signal in the circular, circular, linear
0◦ (H-V) basis (right).

1.5 SUMMARY

We saw that beam splitters operating on various single photon states can yield
a great variety of behaviour. Most of the basic and even some more advanced
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schemes of quantum communication can thus be implemented without any
(nonlinear) photon-photon interaction. Dense coding, teleportation, entan-
glement swapping, and even the production of GHZ states could successfully
be demonstrated using only linear beam splitters and projective measurement.
There are some other proposals that still miss their realisation, such as purifi-
cation of entanglement, quantum error correction, and many more elaborate
ones. While probably in more complex protocols the decreasing efficiency of
the above techniques may eventually limit their technological use, there is still
much room for experiments that not only lead us the way to a deeper under-
standing of the theory but also give us a better intuition to find intriguing
new applications.
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